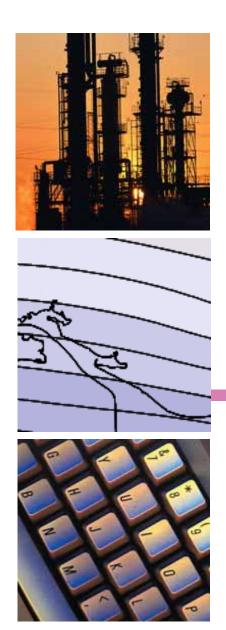


SECARB's Mississippi Test Site: A Field Project Update

for:

7th Carbon Capture & Sequestration Conference Pittsburgh, PA May 5-8, 2008

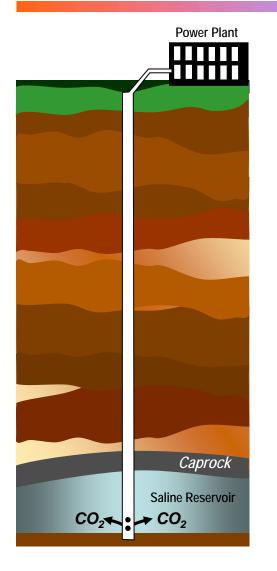
by:


A Contraction of the contraction

Outline for Presentation

- 1. Introduction
- 2. Well Drilling & Completion
- 3. Reservoir Characterization
- 4. CO2 Injection Operations
- 5. Monitoring and Verification
- 6. Project Schedule and Next Steps

1. Introduction



Key Organizations and Individuals

Southeast Regional CO₂ Sequestration Partnership (SECARB)

Mississippi Saline Reservoir CO₂ Injection Project

- **Purpose:** Locate and test suitable geological sequestration sites in proximity to large coal-fired power plants in the Southeast region
- **Initial Target:** Deep saline reservoirs along MS Gulf Coast with high potential CO₂ storage capacity
- Objectives:
 - Build geological and reservoir maps for test site
 - Conduct reservoir simulations to estimate injectivity, storage capacity, and long-term fate of injected CO₂
 - Address state/local regulatory and permitting issues
 - Foster public education and outreach
 - Inject 3,000 tons of CO₂
 - Conduct longer-term monitoring

Victor J. Daniel Power Plant

High capacity CO₂ storage sites exist at Plant Daniel located in Jackson County, Mississippi.

Saline Reservoir Units and Seals

(SE Mississippi)

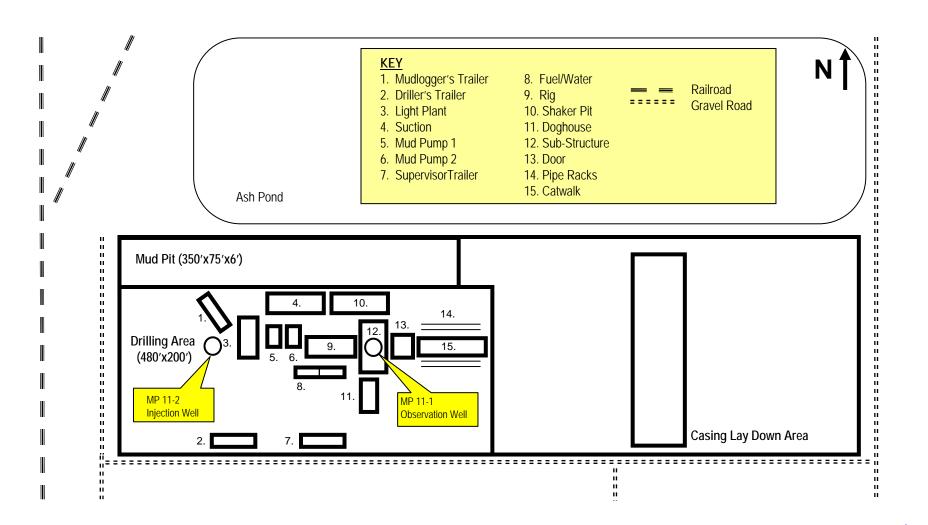
Potential CO₂ Storage Units

- Lower Tuscaloosa Massive Sand Unit (U. Cretaceous)
- Dantzler Formation (L. Cretaceous)

Confining Units (Seals):

- Marine Tuscaloosa
- Austin Formation (Fm.)
- Selma Chalk/Navarro Fm.
- Midway Shale

System	Series	Stratigraphic Unit	Sub-Units	Hydrology			
	M		Pascagoula Fm.				
	Miocene	Misc. Miocene Units	Hattiesburg Fm.	Freshwater Aquifers			
	ne	Onits	Catahoula Fm.	Aquitors			
H	Oligo- cene	Vicksburg		SalineReservoir			
Tertiary	go ne		Red Bluff Fm.	Minor confining unit			
ary	П	Jackson		SalineReservoir			
	Eocene	Claiborne		SalineReservoir			
		Wilcox		SalineReservoir			
	Paleo cene	Midway Shale		Confining unit	(Sea		
		Selma Chalk	Navarro Fm. Taylor Fm.	Confining unit	(Sea		
•	Upper	Upper	Upp		Austin Fm	Confining unit	(Sea
Cre			Eutaw	Eagle Ford Fm.	Saline Reservoir	←CC	
Cretaceous	tac			Tuscaloosa	Upper Tusc.	Minor Reservoir	
			Group	Marine Tusc.	Confining unit	(Sea	
		'	Lower Tusc.	Saline Reservoir	< C(
	5	Washita	Dantzler Fm.	Saline Reservoir	(Sea ← C(← C(
	Lower	Fredricksburg	"Limestone Unit"				
Inje	ction Targ	et	Advance	d Resources Intern	ational		

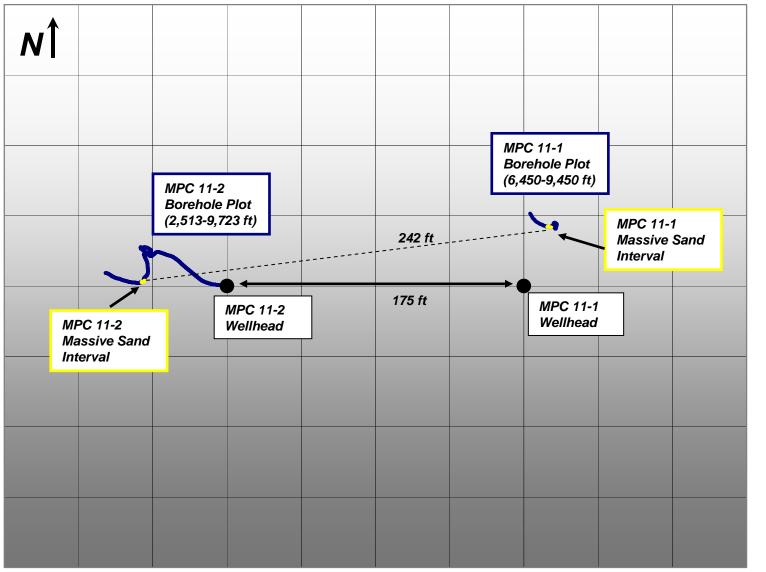


2. Well Drilling & Completion

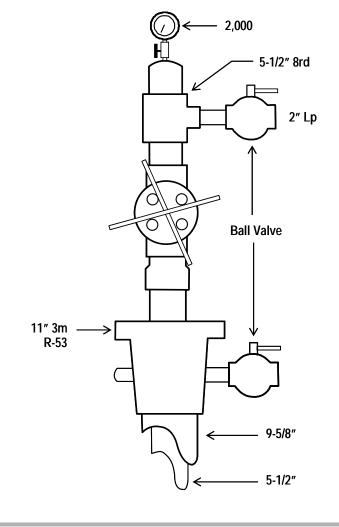
Surface Location

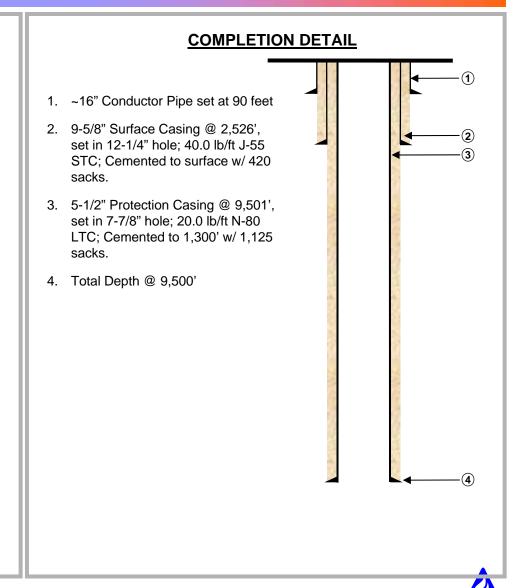
Surface Location Preparation

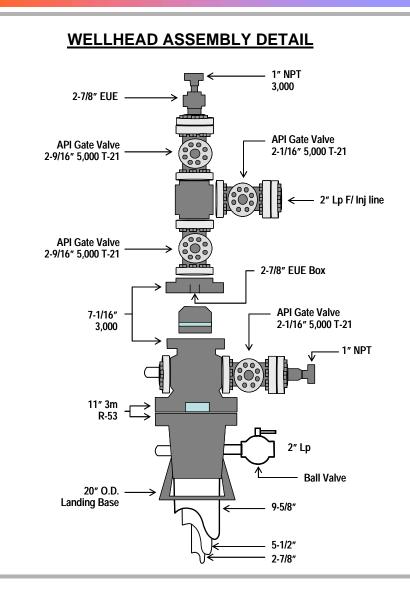
Well Drilling and Completion

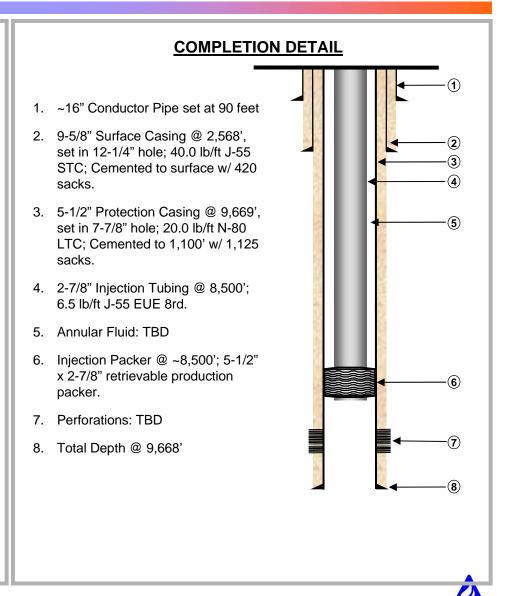


Well Drilling and Completion




Well Drilling and Completion


Observation Wellhead and Observation Well Design


WELLHEAD ASSEMBLY DETAIL

Injection Wellhead and Injection Well Design

Key Geologic Horizons

Formation Tops	Depth Feet	Interval Thickness Feet
Bottom of Fresh Water (<1,000 mg/l)	1,400	1,400
Bottom of Potable Water (<10,000 mg/l)	2,200	800
Selma Chalk Group	5,910	1,240
Eutaw Group	-	280
Austin Chalk Formation	7,150	90
Eagle Ford Formation	7,240	190
Tuscaloosa Group	-	1,290
Upper Tuscaloosa Formation	7,430	240
Marine Tuscaloosa Formation	7,670	490
Lower Tuscaloosa Formation	-	560
Interbeds	8,160	350
Massive Sand Member	8,510	210
Lower Cretaceous Group	8,720	-

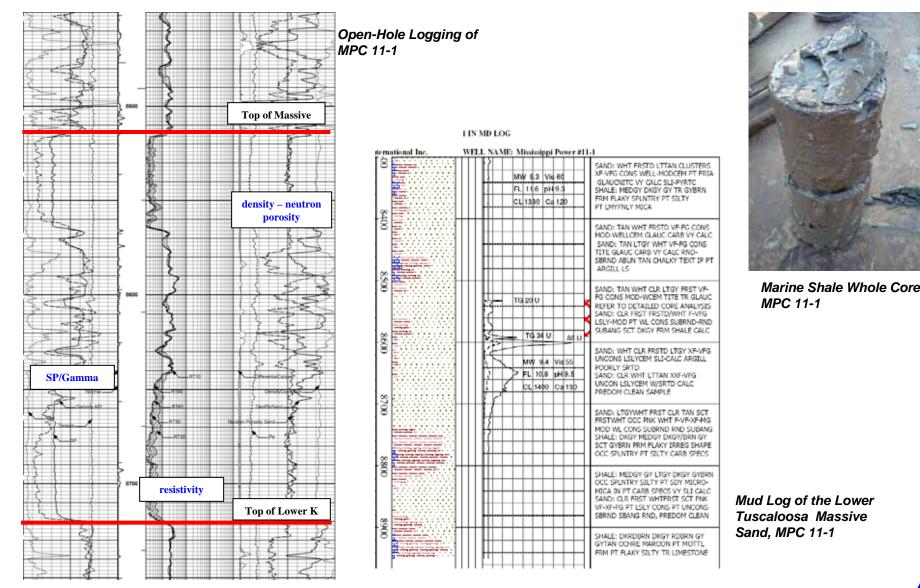
Thicknesses taken from MPC 11-1

3. Reservoir Characterization

Observation Well: Reservoir Characterization

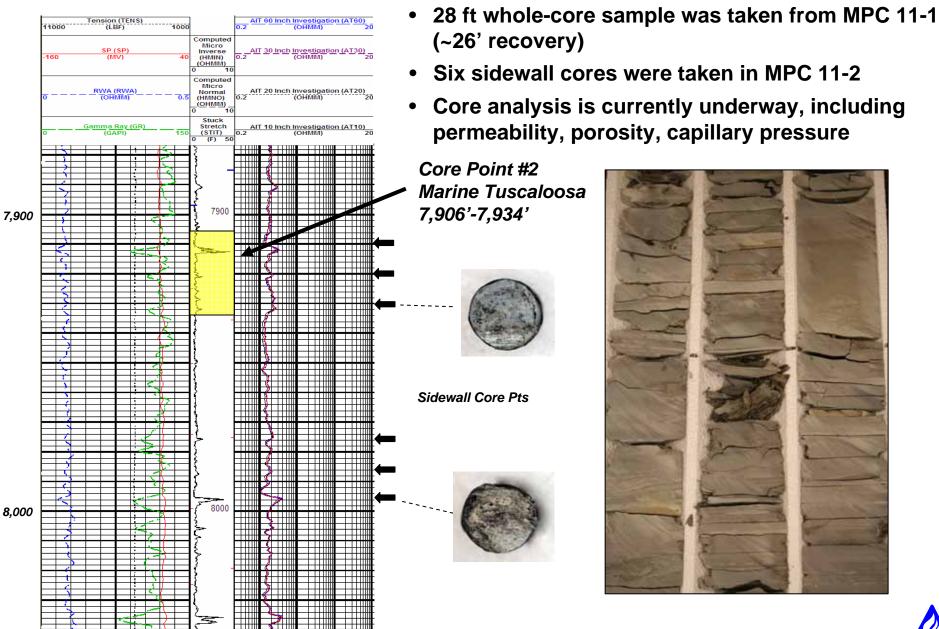
A variety of data gathering activities were performed in the observation well to characterize the subsurface, to assure the integrity of the completed well and to prepare for MMV:

- Mud Logging from 6,000 ft to TD
- Nearly 120 feet of whole core from three formations:
 - Selma (30'/27'), Marine Shale (28'/26'), and Tuscaloosa Massive Sand (60'/58').
- Core analysis will include permeability (horizontal and vertical), porosity, capillary pressure, relative permeability and mineralogy.
- Wireline Logging included:
 - Halliburton's Triple Combo (gamma ray, resistivity, and porosity).
 - Cement Bond Log with Cast V Evaluation
 - Thermal Decay Log for baseline and time-lapse for gas saturation identification
- Vertical Seismic Profiling (VSP) was performed on April 30:
 - Confirm geologic description
 - Provide baseline for CO2 plume monitoring (time-lapse)


Injection Well: Reservoir Characterization

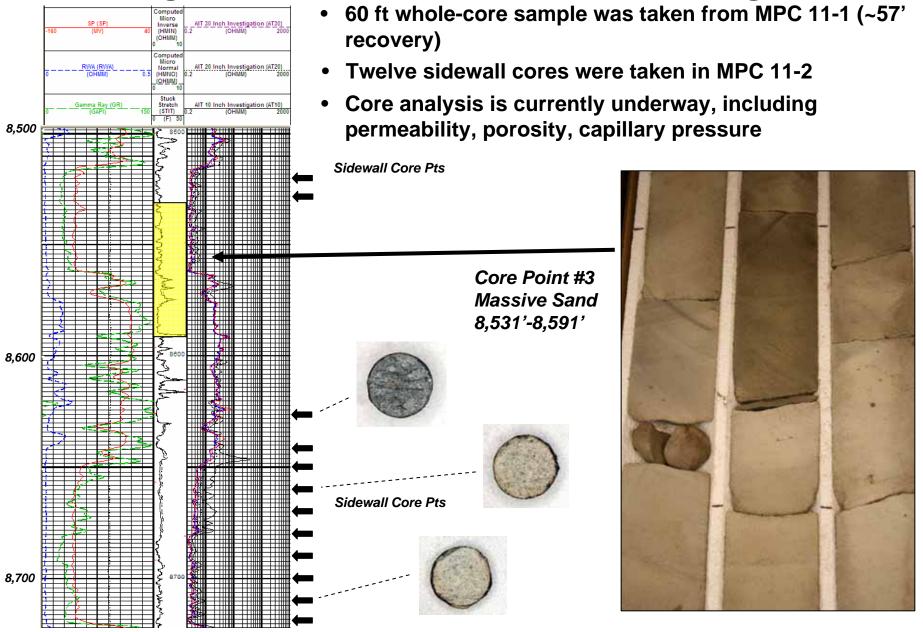
Additional geologic characterization and well integrity activities were conducted in the injection well:

- Wireline Logging included:
 - Schlumberger's Platform Express Log
 - Thermal Decay Log
 - Mechanical Properties Log
 - Combinable Magnetic Resonance
 - Elemental Capture Spectroscopy
 - Cement Bond Log with Cast V Evaluation
- Sidewall coring of the Marine Shale, Massive Sand and Washita-Fredericksburg formations
- Water sampling.
- 2-Day pressure transient testing scheduled for mid-June.
- Completion of the MIT in mid-June.



Observation Well: Logs and Core

Evaluating the Tuscaloosa Marine Shale Caprock



Advanced Resources International

The Mississippi Test Site

Project Update

Evaluating the Lower Tusc. Massive Sand Storage Formation

Advanced Resources International

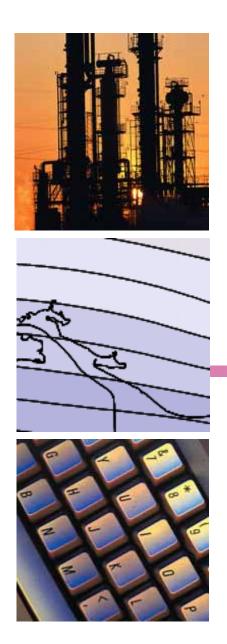
The Mississippi Test Site

Preliminary Massive Sand Core Analysis Results ^{Projec} (Lower Tuscaloosa Massive Sand Storage Formation)

Core	Sample	Sample Depth,	Pemeability millidarcys,		Porosity, percent		Grain Density,
Number	Number	(ft)	to Air	Klinkenberg	Ambient	2500 psi	gm/cc
3	3-1	8531.45	1450.	1380.	22.7	22.4	2.65
3	3-5	8535.50	2390.	2300.	24.5	24.2	2.64
3	3-9	8539.50	1930.	1850.	24.1	23.8	2.65
3	3-13	8543.45	652.	614.	19.7	19.4	2.67
3	3-17	8547.50	1460.	1400.	23.8	23.5	2.65
3	3-21	8551.50	936.	888.	23.2	22.9	2.65
3	3-25	8555.50	848.	804.	22.8	22.5	2.66
3	3-29	8559.50	1030.	977.	24.4	24.1	2.65
3	3-33	8563.50	641.	603.	23.4	23.1	2.65
3	3-37	8567.50	3390.	3280.	25.3	25.0	2.65
3	3-41	8571.40	0.0082	0.0028	7.8	7.5	2.71
3	3-45	8575.50	7.16	5.63	17.9	17.6	2.68
3	3-49	8579.50		+	9.1		2.75

Average values:1230. 1180. 20.7 21.3

+ Indicates the sample is unsuitable for this type of measurement


2.66

Preliminary Sidewall Core Analysis Results

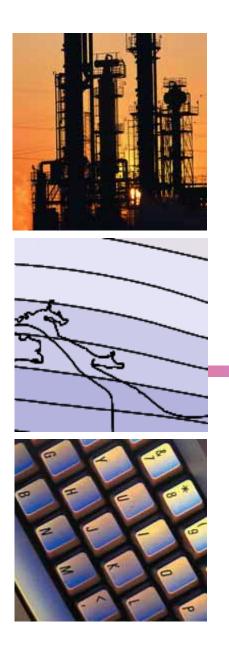
In. Rec.	Sample Depth Feet	Permeability mD	Porosity %			
L	ower Tuse	caloosa Marine	Shale			
0.0	7910.0					
1.7	7920.0	<0.1	8.2			
1.4	7930.0	<0.1	9.2			
1.4	7976.0	<0.1	8.8			
0.0	7986.0					
1.5	7996.0	<0.1	8.3			
	Lower Tu	scaloosa Interb	eds			
0.9	8500.0	5.1	17.4			
1.6	8510.0	<0.1	9.6			
0.8	8520.0	420.0	20.3			
0.9	8530.0	800.0	22.9			
Massive Sand Interlobe						
1.0	8630.0	3.8	16.5			
0.8	8642.0	9.5	18.6			

In. Rec.	Sample Depth Feet	Permeability mD	Porosity %
	Massive	Sand Lower Lo	be
0.8	8650.0	450.0	23.2
1.1	8660.0	550.0	23.4
0.8	8670.0	300.0	22.5
1.1	8680.0	900.0	23.3
0.6	8690.0	980.0	24.0
0.6	8700.0	175.0	19.3
0.9	8710.0	660.0	22.9
1.0	8720.0	600.0	21.6
	Low	er Cretaceous	
0.9	8820.0	3.0	17.5
0.5	8830.0	56.0	20.0
1.5	8840.0	1000.0	23.1
1.0	8850.0	950.0	22.8
0.0	8860.0		
1.0	9010.0	525.0	22.4
1.0	9020.0	1050.0	22.1
1.1	9030.0	775.0	22.9
1.0	9040.0	580.0	23.1
1.2	9050.0	1050.0	24.4

4. CO2 Injection Operations

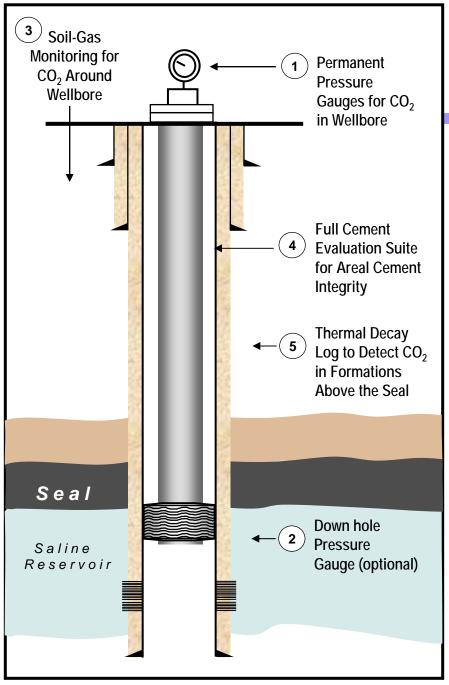
Surface Equipment

- After completion of the well, surface equipment will include the wellhead assembly and:
 - CO₂ storage tanks
 - In-line heater
 - CO₂ pump
 - Automated operations data collection system (pressures and rates)
- Advanced Resources is currently planning to begin CO2 injection operations in October of 2008. This will allow adequate time to analyze the data collected and conduct detailed modeling studies incorporating the new newly collected reservoir data.


CO₂ Supply and Injection

In October 2008, approximately 3,000 tons of CO_2 will be injected at a rate of 100 tons (1.72 MMcf) per day for 30 days.

- CO₂ supply will be from Denbury's CO₂ pipeline outlet in central Mississippi.
- A to be determined provider will deliver the CO_2 to the plant site; anticipate 4 to 6 trucks of liquid CO_2 per day.
- CO₂ will be stored on-site, heated and pumped into the formation.


After completion of CO_2 injection, a slug of N_2 may be used to drive the CO_2 into the formation.

5. Monitoring, Measurement and Verification (MMV)

Well Integrity and Pressure Monitoring

The Mississippi Test Site

The project will include a series of MMV activities to assure well integrity:

- To assure well integrity at the surface, we will: (1) install a pressure gauge on the wellhead to measure sustained casing pressure (CO₂ leakage in the well); (2) conduct continuous monitoring of annular and down hole pressure (optional); and, (3) conduct near-surface soil gas measurements.
- To assure downhole well integrity, we will: conduct (4) Cement bond evaluation both after cementing and after CO₂ injection; and, (5) run a series of Thermal Decay Logs to detect any CO₂ above the reservoir seal.

CO₂ Plume Monitoring

To monitor the flow and storage of CO_2 in the saline reservoir, we will use well logs, seismic and other tools:

- For monitoring the areal profile of the CO₂ plume, we will use timelapse Vertical Seismic Profiles (VSP) before CO₂ injection and about 3 months after CO₂ injection.
- For monitoring the vertical profile of the CO₂ plume, we will use: (1) a time lapse series of thermal decay logs (in both wells) and (2) also use time-lapse VSP.

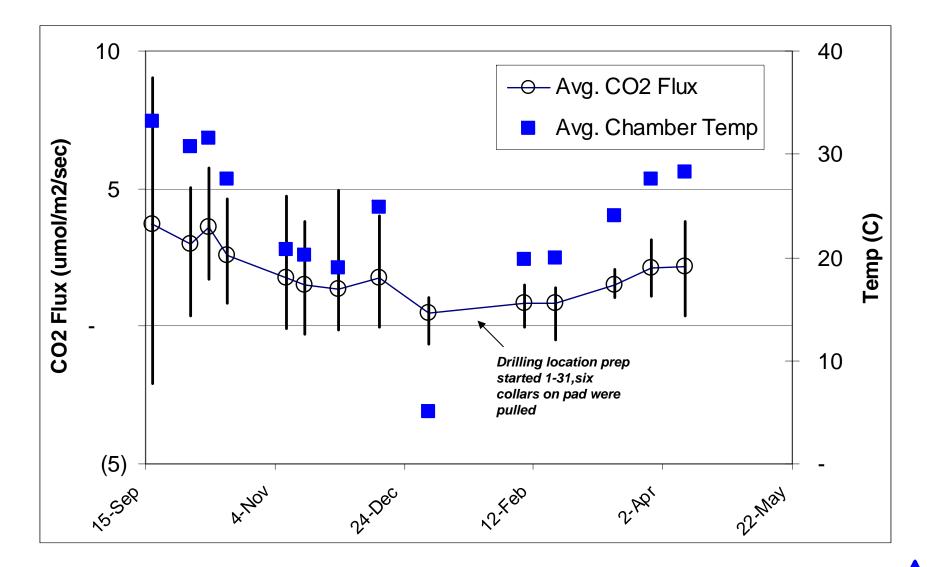
Baseline VSP Deployment

- A baseline Vertical Seismic Profile (VSP) was collected in April
- A four-level geophone string was deployed in the observation well (11-1)
- Two seismic sources were utilized, at near and far offset locations
- Two locations were monitored by staff from Vibra-Tech for potentially damaging vibrations and noise

Near-Surface Monitoring

- Soil Flux. An automated real-time monitoring system will be used to determine surface soil CO₂ flux.
- Tracer Injection with CO₂. Perfluorocarbon Tracers (PFT's) will be added at the wellhead and used to tag and track injected CO₂. Surface sweep monitoring using Praxair's SeeperTrace[™] sample collection will be performed.
- **CO₂ Isotopes.** Isotopic sampling of surface CO₂ will be conducted using shallow (1 meter) boreholes.
- Water Sampling. Shallow water wells will be sampled on a quarterly basis for pH, salinity, metals, alkalinity, conductivity and temperature.
- **Base-line Monitoring.** Monitoring will be performed before, during, and after injection CO₂ injection for all MMV protocols.

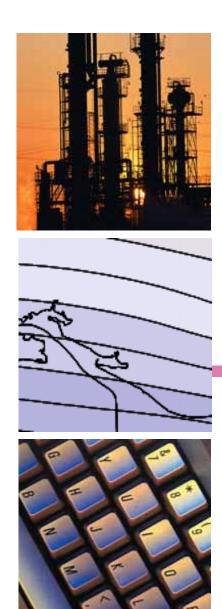
Soil CO₂ Flux Monitoring Stations


Permanent soil monitoring stations

Near-well soil monitoring stations (will be affected by drilling/injection operations

Soil monitoring stations within the drilling footprint (may be affected by drilling/injection operations)

Control soil monitoring stations


Soil Flux Baseline Monitoring

Deep Water Well Baseline Chemistry (Plant Daniel)

Analyte	Well #1	Well #2	Units			
Classical Chemistry Parameters						
Bicarbonate Alkalinity	353	355	mg/L			
Chloride	18	17	mg/L			
Specific Conductance (EC)	651	657	umhos/cm			
Silica (SiO2)	18.2	18.0	mg/L			
Sulfate as SO4	4.07	2.80	mg/L			
Metals						
Aluminum	0.050	ND	mg/L			
Calcium	0.757	0.649	mg/L			
Iron	ND	ND	mg/L			
Magnesium	0.110	0.089	mg/L			
Potassium	0.551	0.496	mg/L			
Sodium	174	174				
Field Test						
pH	9.03	9.15	pH Units			
Temperature	70.0	70.0	°F			

ND = Not Detected

6. Project Schedule/Next Steps

Proposed Project Schedule

	2005	2006	2007	2008	2009
Task 1. PROJECT DEFINITION	•				
 Task 2. PROJECT DESIGN Test Site Plan Establish MMV Protocols Regulatory/Permitting CO₂ Supply 					
Task 3. IMPLEMENTATION Observation Well Plan MMV Baseline Drill/Test Observation Well 					
 Task 4. OPERATIONS Injection Well Site Plan Drill/Equip Injection Well Operations and MMV Geologic/Reservoir Model 					
Task 5. CLOSE /REPORT					

▲ Key Decision Milestones

Next Steps (2008)

- Complete Core Analysis Laboratory Work (May)
- Complete VSP processing (May)
- Update Reservoir Modeling Work (May/June)
- Water Sampling, Pressure Transient Testing & MIT Testing in the Injection Well (June)
- Rig Up Injection Site and Test Equipment (late September)
- Begin Injection (October)
- Quick-look Report (October)
- Periodic Pulsed Neutron Logging (October)
- Revisit Reservoir Modeling Work (November/December)
- Time-lapse VSP (December)

