Assessing Technical and Economic Recovery of Oil Resources in Residual Oil Zones

Prepared for U.S. Department of Energy Office of Fossil Energy - Office of Oil and Natural Gas

> Prepared by Advanced Resources International

> > February 2006

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility of the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Department of Energy.

ASSESSING TECHNICAL AND ECONOMIC RECOVERY OF OIL RESOURCES IN RESIDUAL OIL ZONES

Prepared for

U.S. Department of Energy Office of Fossil Energy Office of Oil and Natural Gas

Prepared by George J. Koperna Vello A. Kuuskraa Advanced Resources International 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 USA

February 2006

TABLE OF CONTENTS

EXECUTIVE SUMMARY

I. INTRODUCTION

- A. Overview of ROZ Recovery Potential
- B. Outline for Report

II. ORIGIN AND OCCURRENCE OF RESIDUAL OIL ZONES

A. Origin of Residual Oil Zones

B. Examining the Effects of Hydrodynamics and Reservoir Properties on Creating a Tilted OWC

C. Evidence for ROZs in the Permian Basin

III. EVALUATING OIL RECOVERY FROM RESIDUAL OIL ZONES

- A. Pilot Demonstrations of ROZ Floods
- B. Sample ROZ Oil Fields

IV. CALIBRATING THE OIL RECOVERY MODELS AND ESTIMATING TECHNICALLY RECOVERABLE ROZ RESOURCES

A. Background on CO2-Prophet

B. Comparison and Calibration of CO2-Prophet with a Full-Scale Reservoir Simulator

V. OVERCOMING BARRIERS TO RECOVERING OIL FROM RESIDUAL OIL ZONES

- A. Overview of Barriers
- B. Evaluating Strategies for Overcoming Barriers

VI. ECONOMICALLY RECOVERABLE OIL RESOURCES IN TRANSITION AND RESIDUAL OIL ZONES

- A. Basic Economic Model
- B. Individual Versus Simultaneous Flooding
- C. Economically Recoverable Resources
- D. Marginal Economic Analysis

APPENDIX A. OIL IN-PLACE FOR THE TZ AND ROZ

- **APPENDIX B.** ADJUSTING THE ROZ OIL IN-PLACE VALUES FOR COMPARISONS OF OIL RECOVERY EFFICIENCY
- **APPENDIX C.** ECONOMIC ANALYSES OF FIVE PERMIAN BASIN SAN ANDRES RESERVOIRS

Our first study, "Stranded Oil in the Residual Oil Zone"¹, identified a large, previously overlooked source of domestic oil resources. This follow-on study "Assessing Technical and Economic Recovery of Oil Resources in Residual Oil Zones", examines how much of this large, new domestic oil resource could be recovered with CO₂ enhanced oil recovery technology.

- 1. Detailed reservoir simulation-based modeling shows that basin uplift and hydrodynamic forces can create a significant interval of lower oil saturation (ROZ) in the oil column of an oil reservoir. The first study set forth the argument that basin uplift and aquifer-imposed hydrodynamics can sweep away significant portions of a reservoir's original oil column, creating a tilted oil-water contact and a large residual oil zone. The net result of this "mother-nature's" waterflood is the upward movement of the transition zone (TZ) and the creation of a "wedgeshaped" residual oil zone (ROZ) potentially holding substantial volumes of previously undocumented and undeveloped domestic oil. This study confirms, using reservoir simulation, that basin tilt and hydrodynamics can create a substantial zone of residual oil below the traditionally established producing water-oil contact.
- 2. These residual oil and transition zone intervals, with lower oil saturation, primarily produce water and thus are uneconomic to develop with primary and secondary oil recovery technology. In the past, due to low oil and its high water saturations, operators avoided these transition and residual oil zones (TZ/ROZ). As such, field operators completed their wells and established their producing oil-water contact

¹ Melzer, S., (2006) "Stranded Oil in the Residual Zone." Advanced Resources International for U.S. Department of Energy (report under review).

(OWC) in the higher oil saturation and upper oil column portions of the reservoir.

- 3. The application of advanced CO₂ enhanced oil recovery technology can mobilize this low residual oil, making these previously avoided transition and residual oil zones productive. Today, with the advent of advanced CO₂-EOR technology there is growing interest in evaluating the lower oil saturation portion of a reservoir and attempting to produce a portion of this previously undocumented domestic oil resource.
- 4. The size of the TZ/ROZ resource is large, estimated at 15 billion barrels of oil in-place for tilted OWC San Andres formation oil fields in the Permian Basin; the national TZ/ROZ resource may approach 100 billion barrels. Our first study examined the geological settings of nine tilted OWC fields in the Permian Basin - Adair, Cowden (N&S), Fuhrman-Mascho, Means, Reeves, Seminole, Seminole East, Wasson, and Yellowhouse. These nine oil reservoirs were judged to hold 8 billion barrels of oil resource in-place in their transition and residual oil zones (TZ/ROZ). When this data was extrapolated to all tilted OWC San Andres formation oil fields, identified to date in the Permian Basin, we estimate a TZ/ROZ resource in-place of 15 billion barrels. Further investigation of the Permian Basin and other domestic oil basins indicates that the TZ/ROZ may be as large as 100 billion barrels of oil in-place nationwide.
- 5. This study applied reservoir stimulation and economic analysis to address the feasibility of technically and economically recovering oil from the TZ/ROZ in five significant Permian Basin oil reservoirs. Considerable uncertainty still surrounds the ability to technically and economically recover this challenging, undefined in-place oil resource. To examine the feasibility of recovering the TZ/ROZ oil resource, this study applies detailed reservoir simulation and economic analysis to five significant Permian Basin, San Andres formation reservoirs that appear to

have favorable TZ/ROZ characteristics. Three of the study fields – Wasson's Denver and Bennett Ranch Units and Seminole's San Andres Unit – currently have CO2-EOR based ROZ pilot projects within their field boundaries. The Vacuum Field was selected for its highly tilted oil-water contact inferring a large potential ROZ. The Robertson Field was selected for its disproportionately large residual oil zone compared to its main pay zone (MPZ).

6. In-depth reservoir simulation shows that, when properly designed, the oil resource in the TZ/ROZ can be efficiently recovered without excess production of water. Based on detailed reservoir simulation results, as set forth in this report, the low to residual saturation oil in the TZ/ROZ is technically recoverable using CO₂-EOR. In examining the feasibility of producing the TZ/ROZ resource, the study identified two keys: 1) deepen and complete wells in the full transition zone and in the upper portion of the residual oil zone; and 2) where possible, conduct the TZ/ROZ CO₂ flood jointly with the main pay zone (MPZ) CO₂ flood.

The generally thin transition zone contains oil that ranges from moderate, mobile oil saturations to low, immobile oil saturations and should always be included in the completion interval. The generally thicker residual oil zone has oil saturations that decline from immobile at the top of the ROZ (±35%) to near zero at the base of the oil column, **Figure EX-1**. The saturation profile and how it tails off (abruptly or gently) is important in determining the optimum TZ/ROZ completion interval and the associated ROZ oil resource target. (Further complicating the ROZ completion interval selection is the potential for water coning in the producing wells due to aquifer influx. As further discussed in the report, this may be mitigated by completing wells higher in the ROZ interval.)

Figure EX-1. Oil Saturation Profile in the TZ/ROZ: Adapted from Wasson Denver Unit Well.

7. Simultaneous application of CO₂-EOR to the main pay zone and the TZ/ROZ provides superior results compared to flooding these two reservoir zones individually. Our in depth reservoir simulation shows that simultaneous main pay zone (MPZ) and transition zone/residual oil zone (TZ/ROZ) CO₂ floods are superior to individual MPZ and TZ/ROZ floods, using the Wasson Denver Unit reservoir and fluid properties as the oil field example. When these two reservoir units are CO₂ flooded simultaneously, the project recovers nearly 20% more oil than when these two reservoir units are CO₂ flooded separately. This is due to much more efficient use of CO₂, improved pressure balance in the oil column and more efficient capture of the displaced oil. The most significant of these is the reduction in the out of zone movement of the injected and displaced fluids (CO₂, oil and water).

8. The technically recoverable ROZ/TZ resource in the Permian Basin is estimated at 5 billion barrels, based on a recovery efficiency of 35% of the 15 billion barrels of ROZ/TZ oil in-place. The study established that, overall, 2.5 billion barrels of oil resource could be ultimately technically recovered from the five study fields using "state-of-the-art" CO₂-EOR technology. Of this, 1.4 billion barrels is from the transition and residual oil zone (TZ/ROZ) resource. The remaining 1.1 billion is recoverable from the remaining oil in-place in the main pay zone (MPZ) (Table EX-1), with 0.6 billion of this already produced or proven.

Table EX-1. Technically Recoverable Oil Resources from Applying CO2-EOR to the MPZ and TZ/ROZ			
Field/Unit	Simultaneous MPZ and TZ/ ROZ CO ₂ -EOR (MMbbl)	MPZ Only CO2-EOR (MMbbl)	Additional Due to TZ/ROZ CO ₂ -EOR (MMbbl)
Seminole (San Andres Unit)	569	268	301
Wasson (Denver Unit)	1,064	570	494
Wasson (Bennett Ranch Unit)	179	84	95
Vacuum (San Andres)	577	172	405
Robertson (San Andres)	83	-	83
Total	2,473	1,094*	1,379

*Of the 1,094 million barrels recoverable from the MPZ, 650 million barrels has already been produced or proven from application of CO_2 -EOR.

The 1.4 billion barrels of oil recoverable from the TZ/ROZ represents a recovery efficiency of 35% of the oil in-place in the TZ/ROZ of these five fields. (This translates to 18% of the original oil in-place, before hydrodynamic sweeping of the ROZ – See **Appendix A**.)

Applying the 35% recovery factor to the previously estimated 15 billion barrels of TZ/ROZ oil in-place estimated for the Permian Basin would add 5 billion barrels of technically recoverable oil to our domestic resource base. Application of "next generation" CO_2 -EOR oil recovery technologies, as examined in our recently completed report, "Evaluating The Potential For "Game Changer" Improvements In Oil Recovery Efficiency From CO_2 Enhanced Oil Recovery"², would significantly increase recovery efficiency and the technically recoverable resource from the TZ/ROZ.

9. Our detailed cost and economic studies show that the TZ/ROZ oil resource in these five Permian Basin oil reservoirs can be economically produced with CO₂-EOR at oil prices of \$35 per barrel. To examine the economics of producing the TZ/ROZ, Advanced Resources constructed an up-to-date economic and cash flow cost model and applied this model to the five study fields. The model includes costs for deepening wells and reworking them for CO₂-EOR, drilling new injection and production wells (as required), and operating the project. The economic model uses an oil price of \$35 per barrel, a CO₂ purchase costs (per Mcf) of 4% of the oil price and a CO₂ recycling cost (per Mcf) of 1% of the oil price. A 25% (pre-tax) rate of return (ROR) economic threshold is used to account for the higher risk nature of pursuing the TZ/ROZ resource.

Detailed economic analysis of the Wasson Denver Unit San Andres oil reservoir shows that while the main pay zone CO₂ flood (conducted separately) exceeds the ROR economic threshold, the TZ/ROZ flood (conducted separately) does not. However, when these two reservoir units are CO₂ flooded jointly, the overall MPZ+TZ/ROZ flood has a ROR that exceeds the economic threshold. This is due to inherent inefficiencies of separately flooding the TZ/ROZ, leading to higher operating and CO₂ purchase costs and lower recoverable oil.

² "Evaluating The Potential For "Game Changer" Improvements In Oil Recovery Efficiency From CO₂ Enhanced Oil Recovery", Advanced Resources International for U.S. Department of Energy (February 2006).

When conducted simultaneously, each of MPZ and TZ/ROZ CO₂-EOR floods in the five study fields (Seminole (San Andres Unit), Wasson (Denver Unit and Bennett Ranch Units), Vacuum and Robertson) has a ROR that exceeded the economic threshold. Of note, the Robertson San Andres flood, essentially a TZ/ROZ flood due to its very limited main pay (2 feet), is economic while the Wasson Denver TZ/ROZ flood is not. This suggests that reservoirs containing minimal to no main pay zones but significant transitional and residual zones may be viable targets for CO₂-EOR in the TZ/ROZ. Producing these TZ/ROZ reservoir types may not suffer the same out of zone losses and inefficiencies as reservoirs with large main pay zones.

10. Applying CO₂-EOR to these five Permian Basin oil reservoirs would provide 1.4 billion of economically recoverable oil from the TZ/ROZ. The economic analysis shows that 1.4 billion barrels of "stranded" oil in the TZ/ROZ may become economically recoverable from the five Permian Basin oil reservoirs using "state-of-the-art" CO₂-EOR technology and a simultaneous flooding scheme. An additional 1.1 billion barrels is economically recoverable from the MPZ, using CO₂-EOR. Of this, 0.6 billion barrels has already been produced or proven.

However, if separate CO_2 flooding schemes are employed for the main pay zone and transition/residual oil zones, the economically recoverable oil drops to 1.1 billion barrels (with 0.6 billion already produced or proven), all in the main pay zone. Under this individual zone, CO_2 -EOR flooding strategy, the oil in the TZ/ROZ will remain uneconomic and "stranded".

I. INTRODUCTION

Residual oil zones (ROZ), the portions of oil reservoirs below their traditional producing oil-water contacts, can hold large volumes of previously undocumented and undeveloped domestic oil resources. The first comprehensive report on this topic, "Stranded Oil in the Residual Oil Zone," examined the origin, nature and presence of ROZ resources.³ It set forth a preliminary estimate of 15 billion barrels of ROZ resource in-place for the Permian Basin of West Texas and East New Mexico. This second report, "Assessing Technical and Economic Recovery of Oil Resources in Residual Oil Zone," examines how much of this resource in-place may become technically and economically recoverable.

A. Overview of ROZ Recovery Potential. Because of their low to moderate oil saturation settings, ROZ resources are not economic when using primary or secondary oil recovery. As such, the great majority of domestic oil wells are completed above the residual oil zone. Outside of the knowledge base being developed by a small group of forward-looking operators, little is known about the ability to successfully target and produce the ROZ resource. However, in the current economic climate, with depleting domestic oil reserves and operators' desires to extend reservoir life, ROZ resources offer new sources of domestic oil production. Because of this, there is growing interest in further understanding the recoverable oil potential in the relatively thick (100 to 300 feet) residual oil zones located beneath the traditional main pay zones of oil reservoirs.

Carbon dioxide (CO_2) enhanced oil recovery (EOR) has emerged as a viable technique for recovering residual oil left behind ("stranded") after waterflooding, mainly in light oil reservoirs below 3,000 feet in depth. Yet, the oil saturation in the residual oil zones (ROZ) (and transition zones (TZ)) of a reservoir is often similar to the oil

³ Melzer, S., (2006) "Stranded Oil in the Residual Zone." U.S. Department of Energy Report (under review).

saturation left after waterflooding. As such, with progress in CO₂ flooding technology and availability of affordable supplies of CO₂, the oil in the ROZ (and the TZ) could become a source for future domestic oil supplies.

Further confirmation of this new oil resource potential is provided by the three residual and transition oil zone CO₂-EOR pilot tests currently underway. Two of these pilot tests are operated by OxyPermian in the Denver and Bennett Ranch Units of the giant Wasson oil field. The Denver Unit pilot was the first to target transition and residual oil zones. The third ROZ pilot test, operated by Amerada Hess, is in the Seminole San Andres Unit. This is a 500 acre pilot TZ/ROZ flood underway since 1996. The response from the Seminole San Andres Unit field pilot test has been promising, providing an estimated cumulative recovery of 3 million barrels of oil to date, at an oil rate of 1,400 bbls/day.⁴

The information on the operation and performance of these three ROZ field pilot projects has been most valuable in calibrating the reservoir simulation-based oil recovery assessments of the ROZ and TZ resource examined by this study.

B. Outline for Report. This report assesses the potential for technically and economically recovering oil from residual and transition oil zones. It summarizes the origin and occurrence of residual oil zones in the Permian Basin and highlights the on-going field research projects that are seeking to extract both residual and transition zone oil from below the traditional oil reservoir's producing oil-water contact (OWC). Then, it examines, using reservoir simulation and an industry-standard economic and cash flow model, the feasibility of producing this previously by-passed TZ/ROZ resources (in five major Permian Basin oil fields) using CO₂-EOR.

⁴ "2004 Worldwide EOR Survey," Oil & Gas Journal, April 12, 2004, pp. 53-65.

II. ORIGIN AND OCCURRENCE OF RESIDUAL OIL ZONES

The term **residual oil zone** (ROZ), as used in this study, does not include the more commonly known **transition zone** (TZ). Although often used interchangeably, the two terms describe different portions of an oil reservoir. All oil reservoirs have a transition zone, an interval tens of feet below the traditionally-defined producing oil-water contact (OWC) where the oil saturation falls rapidly. The thickness of this interval is controlled by capillary forces and the nature of the rock's "wetting phase", with lower permeability oil-wet rocks providing thicker TZ's and water-wet rocks providing thinner ones.

While all oil reservoirs have a transition zone, not all have a residual oil zone, as specific hydrological or geological conditions need to have occurred to create a ROZ, as further discussed below. The great bulk of the ROZ will be at a residual oil saturation (similar to that after a conventional waterflood), tapering to near zero oil saturation at the base. A typical reservoir oil saturation profile is shown in **Figure 1**, *Oil Saturation Profile in the TZ/ROZ: Adapted from a Wasson Denver Unit Well.*

The transition zone (TZ) is the upper portion of the reservoir interval just below the traditional OWC and produces both water and oil. The residual oil zone (ROZ) is generally the middle and lower portions of the reservoir interval below the traditional OWC and produces primarily water.

The reason that both terms - - residual oil zone (ROZ) and transition zone (TZ) - - are used in this report is to bring special attention to the abnormally thick ROZs that can exist for reasons beyond normal capillary effects. For example, if the original oil trap possessed a thick oil column in its geologic past and the lower portion of this oil column was tilted and/or invaded by water, this lower reservoir interval would have an oil saturation much like that of the residual oil saturation in the swept zone of a water flood. In certain geologic settings, oil reservoirs can have an anomalously thick ROZ and thus could contribute considerable additional CO_2 -EOR reserves.

2-1

Figure 1. Oil Saturation Profile in the TZ/ROZ: Adapted from a Wasson Denver Unit Well

A. Origin of Residual Oil Zones. Three possible origins for ROZs were set forth in the initial report.⁵ To illustrate the origins of ROZs, we begin with a conventional but hypothetical hydrocarbon accumulation, shown on **Figure 2**, *Original Oil Accumulation Under Static Aquifer Conditions (A Hypothetical Example).* This original oil accumulation may subsequently be affected by natural forces such as regional basin uplift, seal breach, or a change in the hydrodynamics of the underlying regional aquifer, leading to the development of a ROZ.

⁵ Melzer, S., (2006) "Stranded Oil in the Residual Zone." U.S. Department of Energy Report (under review).

Figure 2. Original Oil Accumulation Under Static Aquifer Conditions (A Hypothetical Example)

1. Regional or Local Basin Tilt. Figure 3, *Original Oil Accumulation Subject to Regional Tilt, Forming a ROZ,* illustrates an original oil trap with a hydrocarbon spill point on the east. The trap is subsequently subjected to an upward basin tilt on the west of approximately 40 feet per mile. This hypothetical situation preserves the spill point of the original hydrocarbon accumulation on the east side and causes the oil column to thin on the west side, leaving behind a zone of "water swept" oil. The resulting main oil column is now tilted and the Type 1 ROZ is wedge shaped with the updip (west) side being thicker.

Figure 3. Original Oil Accumulation Subject to Regional Tilt, Forming a ROZ

2. Breached and Reformed Reservoir Seals. **Figure 4**, *Original Accumulation with a Breached/Repaired Seal, Forming a ROZ*, presents a second source of ROZs. Here, the breaching and repair of the original oil trap forms the ROZ. This can occur, for example, through buildup of fluid pressures during hydrocarbon formation, escape of a portion of the hydrocarbons, subsequent healing of the seal, and re-entrapment of hydrocarbons. The second oil trap now contains a thinner main oil column than was originally present and a ROZ. In this second case, the base of oil saturation, the TZ/ROZ, and the producing OWC would be horizontal. (Tar mats and other solid hydrocarbons within the oil column may provide evidence of breached and reformed reservoir seals.) While breached seals of original hydrocarbon accumulations are probably quite commonplace in the subsurface, no examples of this Type 2 ROZ reservoir have been found to date in the literature.

Figure 4. Original Accumulation with a Breached/Repaired Seal, Forming a ROZ

3. Altered Hydrodynamic Flow Fields. **Figure 5**, *Change in Hydrodynamic Conditions, Causing Sweep of the Lower Oil Column and the Oil/Water Contact Tilt, Forming a ROZ,* shows the same original trap seen in **Figure 2**. In this example, a change in the west-to-east hydrodynamic flowfield creates a tilted OWC and the ROZ. Here, the OWC tilt is due to the hydrodynamic forces on the oil column. Hubbert⁶ provides analytical methods to determine oil-water contact tilts based upon the potentiometric gradient of the aquifer and the densities of the oil and water. With information on the current OWC tilt and knowledge of the oil and water densities, one can calculate the hydrodynamic flow field responsible for the oil-water contact tilt beneath the main oil column using the following formula:

⁶ Hubbert, M.K. (1953), "Entrapment of Petroleum under Hydrodynamic Conditions," AAPG Bulletin, Vol 37, No. 8 (August 1953), pp. 1954-2028.

Figure 5. Change in Hydrodynamic Conditions, Causing Sweep of the Lower Oil Column and the Oil/Water Contact Tilt, Forming a ROZ

Oil-Water Contact Tilt = $dz/dx = -dp/dx * (\rho_w/(\rho_w - \rho_o))$

 $\begin{array}{ll} \mbox{Where:} & \mbox{d}p/\mbox{d}x = \mbox{Pressure (Potentiometric) Gradient of the Aquifer} \\ & \rho_w = \mbox{Density of the Water in the Aquifer} \\ & \rho_o = \mbox{Density of the Oil} \end{array}$

This Type 3 ROZ does not necessarily have to possess a retained main oil column as the entire original oil trap may become a ROZ. This situation may be prevalent where high hydrodynamic gradients are present, enabling low relief structural traps to be completely water flushed.

B. Examining the Effects of Hydrodynamics and Reservoir Properties on Creating a Tilted OWC. Some in the industry have questioned whether (and how) hydrodynamic flow is truly able to reshape the oil column in a reservoir, resulting in a substantial ROZ. One answer to this question is set forth in the theoretical equation above. This equation states that the tilt of the OWC and the subsequent development of the ROZ are influenced by aquifer flow rates and reservoir properties. To explore this issue in more depth, we first constructed a hypothetical 2-D cross section of a typical Permian Basin oil reservoir and its underlying aquifer. Next, we subjected this reservoir to varying horizontal aquifer flow rates and permeability values to examine the effect of these variables on the OWC tilt and the creation of a ROZ.

Figure 6, *Initial Oil Reservoir/Aquifer Conditions*, shows the initial geometry of the reservoir/aquifer cross section before a change in aquifer flow is induced. The Wasson Denver Unit San Andres reservoir was used for input data for the simulation. The key reservoir data include: porosity (12%), horizontal permeability (5 md), vertical permeability (0.5 md), oil gravity (33°API), and residual oil saturation (35%), among others. This 2-D system is 5,000 ft long horizontally and 600 ft tall vertically, with a 400 ft thick original oil column. Next, published Permian Basin San Andres formation capillary forces were imposed on the reservoir/aquifer, resulting in a 50 ft thick transition zone (TZ) and a 350 ft thick main pay zone. A 200 ft thick aquifer lies below the oil column. The water source is on the left side of the cross section and the spill point is on the right side, so flow is from left to right.

Figure 7, *Effects of Low Hydrodynamic Flow on OWC Tilt*, depicts the results of 2,000 years of water movement in this 2-D system. A steady-state aquifer flow system, with a low constant flows velocity of 0.1 feet per year was first introduced. Shown in Figure 7 are the resulting changes in the oil-water contact (OWC), transition zone (TZ), and residual oil zone (ROZ). Only modest OWC tilting and ROZ development occurs following the initiation of this low rate of water flow.

Figure 6. Initial Oil Reservoir/Aquifer Conditions

Figure 7. Effects of Low Hydrodynamic Flow on OWC Tilt (0.01 STB/D, ~0.1 ft/yr)

Figure 8, *Effects of High Hydrodynamic Flow on OWC Tilt,* on the other hand, shows much more pronounced changes in the OWC, TZ and ROZ of the reservoir following the initiation of a higher, more representative aquifer flow rate of 1 foot per year. The result is a larger ROZ and a diminished main pay zone.

Using aquifer flow of 1 foot per year and a higher horizontal permeability (50 md), **Figure 9**, *Effects of Aquifer Permeability on OWC Tilt,* leads to the creation of a more modest ROZ compared to the previous case (shown in Figure 8). This indicates that high horizontal permeability will decrease the hydrodynamic interaction between the aquifer and the oil column, suppressing the size of the ROZ.

Increasing the vertical to horizontal permeability ratio (kv/kh) to 1 (**Figure 10**, *Effects of High Kv/Kh on OWC Tilt*) does not appreciably change the final oil and water contact tilts, as compared to **Figure 8**. However, decreasing the vertical to horizontal permeability ratio to 0.01 creates an S-shaped OWC, with a very pronounced ROZ near the flow source and a subtle ROZ along the middle of the cross-section, **Figure 11**, *Effects of Low Kv/Kh on OWC Tilt*. A longer than 2,000 year hydrodynamic flow period would likely change the shape of this ROZ wedge, creating a much steeper TZ/ROZ interface.

Figure 8. Effects of High Hydrodynamic Flow on OWC Tilt (0.1 STB/D, ~1 ft/yr)

Figure 9. Effects of Higher Aquifer Permeability on OWC Tilt (0.1 STB/D, ~1ft/yr) (Perm 50 md)

Figure 10. Effects of High Kv/Kh on OWC TILT (0.1 STB/D, ~1ft/yr), Kv/Kh = 1

Figure 11. Effects of Low Kv/Kh on OWC TILT (0.1 STB/D, ~1ft/yr), Kv/Kh = 0.01

C. Evidence for ROZs in the Permian Basin. Figure 12, Oil Fields with *Tilted Oil-Water Contacts, Northern Shelf and Central Basin Platform, Permian Basin,* is taken from Brown (2001)⁷. The author made a thorough study of tilted OWCs in the carbonate shelf areas of the Permian Basin and concluded that many northern shelf San Andres fields have OWC tilts of hydrodynamic origin. This work, along with other information⁸, makes a strong case that the Middle Tertiary uplift in central New Mexico elevated the San Andres outcrops, changing subsurface aquifer hydrodynamics. The uplift created large hydrodynamic gradients below the oil reservoirs in this portion of the Permian Basin, sweeping substantial oil out through the downdip reservoir spill points and creating OWC tilts and ROZs.

The contrasting ROZ oil saturation profiles of two Permian Basin fields demonstrate the variability that hydrodynamic forces may have on creating a ROZ.

- The residual oil zone (ROZ) profile at the Wasson Denver Unit is often referred to as a transition zone (TZ) because of the relatively uniform gradational nature of the water (and oil) saturation profile, Figure 1. However, the zone is 300 feet thick on the southwest side which clearly argues for an origin other than normal transition zone capillary forces.
- The ROZ profile at the Seminole San Andres Unit is substantially different from the oil saturation profile at Wasson. Here, a thick middle zone of nearly constant oil and water saturation is present, Figure 13, Seminole Field Water Saturation Profile.
- But, both the Wasson and Seminole fields have tilted OWCs, implying past or current hydrodynamic forces at work. Horizontal water influx and flushing of oil would explain both the tilt and the thick ROZ profile in these two oil reservoirs.

⁷ Brown, A., (2001), "Effects of Hydrodynamics on Cenozoic Oil Migration, Wasson Field Area, Northwestern Shelf of the Permian Basin," West Texas Geological Society Fall Symposium, Pub 01-110 (Viveiros, J.J. & Ingram, S.M. eds), Oct 2001, pp 133-142.

⁸ Personal Communications (Mobil Oil Company) on the Salt Creek ROZ pilot, Kent County, TX.

Figure 12. Oil Fields with Tilted Oil-Water Contacts: Northern Shelf and Central Basin Platform, Permian Basin

Figure 13. Seminole Field Water Saturation Profile

III. EVALUATING OIL RECOVERY FROM RESIDUAL OIL ZONES

The Permian Basin appears to be well positioned to be the initial setting for delivering oil production from transition and residual oil zones. Since most of the TZ/ROZ oil resource is immobile, CO_2 -EOR may be the only way to re-mobilize and produce these vast oil resources. The basin has a large CO_2 delivery infrastructure with many of the fields already under CO_2 -EOR in their main pay zone (MPZ). Co-producing the MPZ and the TZ/ROZ could be a logical next step, as illustrated by the initial TZ/ROZ activity underway in this basin.

A. Pilot Demonstrations of ROZ Floods. Three ROZ CO₂-EOR pilot projects are currently underway in the Permian Basin. Two are being conducted within the giant Wasson Field (Denver and Bennett Ranch Units) while the third is in the Seminole-San Andres Unit. The following provides a brief discussion of these three ROZ pilot projects.

1. Seminole Field, San Andres Unit. Amerada Hess initiated a ROZ pilot in the San Andres Unit of the Seminole Field (SSAU) in April of 1996, **Figure 14**, *Area of the SSAU ROZ Phase I Pilot.* Four injection wells and fourteen producing wells were deepened to include the ROZ and the MPZ. Estimates of CO₂ injection into the ROZ and the MPZ were made by using CO₂ injection profile logs. The high CO₂-to-oil ratio of the pilot (according to the operator) is only partially indicative of the pilot ROZ performance, due to conformance issues with CO₂ injected into the ROZ. However, oil response from CO₂ injection into the ROZ has been clearly established. Oil production from the ROZ has increased to 1,400 barrels⁹ per day and the watercut from the combined MPZ/ROZ CO₂ flood has declined significantly after opening the ROZ interval. **Figure 15**, *Composite Production Curve and Watercuts for the SSAU ROZ Phase I Project*, illustrates the aggregate response for the joint MPZ and ROZ pilot.

⁹ "2004 Worldwide EOR Survey," Oil & Gas Journal, April 12, 2004, pp. 53-65.

Figure 15. Composite Production Curve and Watercuts for the SSAU ROZ Phase I Project

Estimates of MPZ and ROZ oil production were determined on a well-by-well basis. MPZ oil production dominated initial CO₂-EOR performance until the ROZ oil response caused a significantly improved oil and watercut in 1998, **Figure 16**, *SSAU ROZ Phase I Performance: ROZ and MPZ Response*. The pilot has clearly demonstrated the ability to mobilize oil from the ROZ. In response to the success of the pilot flood, Amerada Hess has recently begun expanding the capacity of its CO₂ processing plant and is planning to expand the ROZ pilot.

2. Oxy Permian's Denver Unit. Shell initiated the first ROZ field pilot in 1991, with a six pattern CO_2 flood within an area of the Denver Unit called the transition zone sweetspot (TZSS). This is the portion of the Unit where the combination of rock properties and in-place residual oil provides a favorable oil target. The success of the TZSS pilot led to a 21-pattern expansion, with the entire project adopting the name, Transition Zone Sweetspot CO_2 Demonstration Project, **Figure 17**. As in the initial pilot areas, the upper 150 feet of the transition/residual oil zone was chosen for CO_2 injection, as shown in **Figure 18**, *Example Log from the Transition Zone Pilot at the Denver Unit*. With the sale of the Denver Unit, OxyPermian became the new operator of the TZSS Demonstration Project. A series of additional TZ field pilots and demonstrations followed the initial TZSS CO_2 FLOOD, **Figure 17**.

The incremental oil responses from three of the Denver Unit ROZ pilot and demonstration projects are further examined: the original TZSS, implemented in 1995 (Figure 19); the Phase 1 Area, implemented in July 1997 (Figure 20); and the Phase 2 Area, which was implemented in 2002 (Figure 21). Much like the experience at SSAU, Oxy Permian has observed a somewhat higher utilization of CO_2 per barrel of produced oil in the transition zone pilots.

Figure 16. SSAU ROZ Phase I Performance Separating ROZ and MPZ Response

Figure 17. Denver Unit Transition Zone Map Showing Phased Areas

Figure 18. Example Log from the Transition Zone Pilot at the Denver Unit

Figure 20. Denver Transition Zone (Phase I Area) Oil Response (Phase I look back)

Figure 21. Denver Transition Zone (Phase 2 Area) Oil Response

The initial forecasts of oil response for these three projects were hampered by a lack of analog floods by which to make experience based predictions, necessitating an almost complete reliance on computer simulations. The match of expected oil response to actual oil production, as observed in **Figures 19** through **21**, has been exemplary and is a tribute to the foresightedness of the reservoir teams.

3. Oxy Permian's Bennet Ranch Unit. Shell's confidence in the economic viability of flooding the transition zone was further demonstrated in 1995 with plans for implementation of the Bennett Ranch Unit CO₂ flood¹⁰. The original plan called for deepening the injection and production wells to include 75 feet of the TZ/ROZ, making it the first CO₂ flood that would include both the MPZ and the TZ/ROZ in the original CO₂ flood. However, due to low oil prices, the wells were not deepened and only the MPZ was flooded in the initial implementation. In late 2003, Oxy Permian deepened wells into the TZ/ROZ, and this resource was added to the overall CO₂ flood. Today, about half of the CO_2 flooded patterns are being co-developed in the MPZ and TZ/ROZ. Figure 22, Bennett Ranch Unit CO₂ Flood Response (Shell Forecast of 6-95), presents a look at the initial forecast of oil production for the 8 and 32 pattern CO₂ floods. Figure 23, Bennett Ranch Unit (Wasson Field) Oil Response, presents the oil production results at the Bennett Ranch Unit Project. The figure clearly shows increased oil production after the TZ/ROZ reservoir interval was added in 2003. Additional ROZ development at the Bennett Ranch Unit is being planned.

¹⁰ Shell Western E&P, Inc. Field Briefing Materials upon the Implementation of the Bennett Ranch CO₂ Flood, June 1995.

Figure 22. Bennett Ranch Unit CO2 Flood Response (Shell Forecast of 6-95)

Figure 23. Bennett Ranch Unit (Wasson Field) Oil Response

B. Sample ROZ Oil Fields. Five major Permian Basin fields were assessed by this study, using reservoir simulation, to estimate the technical and economic feasibility of recovering oil from the TZ/ROZ. The five fields are all San Andres reservoirs and include the three units already undergoing ROZ field pilots – Wasson Denver Unit; Wasson Bennett Ranch Unit; and Seminole San Andres Unit – as well as two additional reservoirs of special interest – the Vacuum Grayburg/San Andres reservoir in East New Mexico and the Robertson San Andres reservoir in West Texas.

The Vacuum Field was selected to illustrate a setting with a very pronounced OWC tilt (50 ft/mile), implying a large ROZ target in addition to a favorable MPZ. The Robertson Field was selected to illustrate a setting with a very small MPZ (2 feet of net pay) and a large ROZ (65 feet of net pay) where the TZ/ROZ recovery project could greatly expand the field's ultimate oil recovery. Background information for each of the five study fields follows.

1. Seminole Field, San Andres Unit. The Seminole San Andres Unit is located on the northeast edge of the Central Basin Platform in Gaines County, Texas, about 60 miles NNW of the city of Midland, **Figure 24**, *Geographical and Geological Setting of the Wasson and Seminole Fields*. The Seminole oil field was discovered in 1936 and unitized in 1969. The San Andres Unit of the field covers 15,700 acres and has an estimated MPZ OOIP of 1,353 MMbbls and a ROZ OIP of 365 MMbbls (refer to next section for ROZ oil in-place calculation methodology). The MPZ for the Unit is at a depth of 5,100 feet and averages 135 feet in net thickness. The ROZ for the Unit is at a depth of 5,262 feet and has an estimated net thickness of 100 feet, **Figure 25**, *Seminole Field Input Parameters*.

Figure 24. Geographical and Geological Setting of the Wasson and Seminole Fields

Currently, 358 production wells and 184 injection wells are active in the Unit. Cumulative MPZ oil production for the Seminole San Andres Unit is 621 MMbbls. Tertiary CO₂ flooding began in 1983 and accounts for 141 MMbbls of the cumulative MPZ oil production. As discussed above, a CO₂-EOR ROZ pilot is underway in this reservoir. The production history of the Seminole Field is shown in **Figure 26**, *Production History of the Seminole San Andres Unit (SSAU)*.

Basin Name	Permian We	est Texas 8A						
Field Name	SEMINOLE							
Reservoir	SAN ANDRE	ES						
Reservoir Parameters:	MPZ	ROZ	Oil Production	MPZ	ROZ	Volumes	MPZ	ROZ
rea (A)	15,700	15,700	Producing Wells (active)	358	15	OOIP (MMbl)	1,353.0	365.3
let Pay (ft)	135	100	Producing Wells (shut-in)	250	-	Cum P/S Oil (MMbl)	479.5	-
Pepth (ft)	5,100	5,262	Cum Oil (MMbbl)	620.5	3.0	2002 P/S Reserves (MMbl)	5.5	-
Dil-Water Contact Dip	N/A	20	2002 Production (MMbbl)	8.6	0.5	Ult P/S Recovery (MMbl)	485.0	-
Olosily Jeservoir Temp (deg E)	15.0%	157		141.0	3.0	Remaining (WWDDI)	000.0	305.
nitial Pressure (psi)	2020	2020	02 CO2-EOR Reserves (MMbbl)	126.0	7.8	Recovery Enciency (70)	5078	
Pressure (psi)	1360	1360				OOIP Volume Check	[
			Water Production			Reservoir Volume (AF)	2,119,500	1.570.00
Boi	1.387	1.387	2002 Water Production (Mbbl)	0	0	Bbl/AF	639.9	232.7
$S_0 \otimes S_0$, swept	1.050	1.387	Daily Water (Mbbl/d)	0	0.0	OOIP Check (MMbl)	1,356.2	365.3
	0.880	0.320	.,,	-			,	
wept Zone S _o	0.320	0.320	Injection			SROIP Volume Chec	:k	
xi	0.120	0.680	Injection Wells (active)	184	0	Reservoir Volume (AF)	2,119,500	1,570,00
	•		Injection Wells (shut-in)	0	0	Swept Zone Bbl/AF	307.4	232.
PI Gravity	35	35	2002 Water Injection (MMbbl)	0	0.0	SROIP Check (MMbbl)	651.5	365.
'iscosity (cp)	2.20	2.20	Daily Injection - Field (Mbbl/d)	0	0.0	-		
			Cum Injection (MMbbl)	0	0.0			
ykstra-Parsons	0.75	0.75	Daily Inj per Well (Bbl/d)	0	0.0	ROIP Volume Check	<u> </u>	
			=			ROIP Check (MMbl)	868.0	365.

Figure 25. Seminole Field Input Parameters Summary

2. Wasson Field, Denver Unit. The Wasson Field is located on the southern limit of the Northwest Shelf of the Permian Basin in Yoakum County, Texas, about 80 miles NNW of the city of Midland, Figure 24. As seen in Figure 27, Wasson Field Area with San Andres Formation Producing Units, the Denver Unit is one of seven units of the huge Wasson Field. The greater Wasson Field covers over 68,000 acres and holds an estimated 4.5 billion barrels of OOIP in the MPZ. The Denver Unit lies within the southern portion of the Wasson Field and is the largest of the seven units, with a reservoir area of 27,848 acres, a MPZ OOIP of 2,372 MMbbls, and a ROZ OIP of 1,039 MMbbls. The MPZ is at a depth of 5,200 feet and has an average net thickness of 141 feet. The ROZ is at a depth of 5,380 feet and has an average net thickness of 150 feet, Figure 28, Wasson-Denver Unit Input Parameters Summary. The Denver Unit has 1,293 active production wells and 1,198 injection wells. Cumulative MPZ oil production for the Denver Unit is 1,211 MMbbls with 169 MMbbls of this due to tertiary CO₂ flooding. A series of CO₂-EOR ROZ pilot and demonstration projects have been underway in this reservoir unit since 1991, contributing to the above cited oil production from CO_2 flooding.

3. Wasson Field, Bennett Ranch Unit. As shown in **Figure 27**, the Wasson Bennett Ranch Unit is located in the northeastern portion of the greater Wasson Field. It has a reservoir area of 7,027 acres, a MPZ OOIP of 288 MMbbls and a ROZ OIP of 240 MMbbls. The MPZ is at a depth of 5,100 feet and has an average net thickness of 90 feet. The ROZ is at a depth of 5,305 feet and has an estimated net thickness of 150 feet, **Figure 29**, *Wasson-Bennett Ranch Unit Input Parameters*. The Bennett Ranch Unit has 81 active producing wells and 75 actual injection wells. Cumulative MPZ oil production for the Bennett Ranch Unit is 75 MMbbls with 3 MMbbls of this due to tertiary CO₂ flooding. A portion of the oil being recovered by CO₂ flooding is due to the recently started CO₂-EOR ROZ pilot.

Adapted from Shell Western E&P, Inc. Field Briefing Materials upon the Implementation of the Bennett Ranch CO2 Flood, 6/95.

Figure 26. Production History of the Seminole San Andres Unit (SSAU)

Figure 27. Wasson Field Area with San Andres Formation Producing Units

Basin Name	Permian Wes	st Texas 8A						
Field Name	WASSON (DE	ENVER)						
Reservoir	SAN ANDRES	S						
Reservoir Parameters:	MPZ	ROZ	Oil Production	MPZ	ROZ	Volumes	MPZ	ROZ
rea (A)	27,848	27,848	Producing Wells (active)	1,293	-	OOIP (MMbl)	2,371.9	1,039.0
et Pay (ft)	141	150	Producing Wells (shut-in)	1,210	-	Cum P/S Oil (MMbl)	1,041.5	-
epth (ft)	5,200	5,380	Cum Oil (MMbbl)	1,210.7	-	2002 P/S Reserves (MMbl)	57.3	-
il-Water Contact Dip	N/A	30	2002 Production (MMbbl)	13.1	-	Ult P/S Recovery (MMbl)	1,098.8	-
	12.0%	12.0%	CO2-EOR Cum (MMbbl)	169.2	-	Remaining (MMbbl)	1,273.1	1,039.0
eservoir Temp (deg F)	105	100	2002 CO2-EOR (MMbbl)	9.3	-	Recovery Efficiency (%)	40%	07
ressure (psi)	1100	1100		141.0		OOIP Volume Check		
			Water Production			Reservoir Volume (AF)	3,926,568	4,177,200
oi	1.310	1.310	2002 Water Production (Mbbl)	0	0	Bbl/AF	604.1	248.7
@ S _o , swept	1.050	1.310	Daily Water (Mbbl/d)	0	0.0	OOIP Check (MMbl)	2.371.9	1.039.0
Di	0.850	0.350					/	
wept Zone S _o	0.350	0.350	Injection			SROIP Volume Chec	:k	
vi	0.150	0.650	Injection Wells (active)	1198	0	Reservoir Volume (AF)	3,926,568	4,177,200
			Injection Wells (shut-in)	0	0	Swept Zone Bbl/AF	310.3	248.7
PI Gravity	33	33	2002 Water Injection (MMbbl)	0	0.0	SROIP Check (MMbbl)	1,218.5	1,039.0
scosity (cp)	1.18	1.18	Daily Injection - Field (Mbbl/d)	0	0.0			
			Cum Injection (MMbbl)	0	0.0			
/kstra-Parsons	0.75	0.75	Daily Ini per Well (Bbl/d)	0	0.0	ROIP Volume Check		

Figure 28. Wasson-Denver Unit Input Parameters

Basin Name	Permian Wes	st Texas 8A						
Field Name	WASSON (BI	ENNETT RANCH)						
Reservoir	SAN ANDRES	S						
Reservoir Parameters:	MPZ	ROZ	Oil Production	MPZ	ROZ	Volumes	MPZ	ROZ
Area (A)	7,027	7,027	Producing Wells (active)	81	-	OOIP (MMbl)	288.0	24
Net Pay (ft)	90	150	Producing Wells (shut-in)	75	-	Cum P/S Oil (MMbl)	72.2	
Depth (ft)	5,100	5,305	Cum Oil (MMbbl)	75.4	-	2002 P/S Reserves (MMbl)	3.1	
Oil-Water Contact Dip	N/A	30	2002 Production (MMbbl)	0.9	-	Ult P/S Recovery (MMbl)	75.2	
Porosity	11.0%	11.0%	CO2-EOR Cum (MMbbl)	3.2	-	Remaining (MMbbl)	212.7	24
Reservoir Temp (deg F)	105	105	2002 CO2-EOR (MMbbi)	0.7	-	Recovery Efficiency (%)	26%	
Pressure (psi)	1000	1805	02 CO2-EOR Reserves (MIVIDDI)	10.0	-	OOIP Volume Check		
	1000	1000	Water Production			Reservoir Volume (AF)	632 430	1 054
B _{oi}	1.312	1.312	2002 Water Production (Mbbl)	0	0	Bbl/AF	455.3	227.
$B_0 \otimes S_0$, swept	1.050	1.312	Daily Water (Mbbl/d)	0	0.0	OOIP Check (MMbl)	288.0	240.
S _{oi}	0.700	0.350				-		
Swept Zone S₀	0.350	0.350	Injection			SROIP Volume Chec	k	
S _{wi}	0.300	0.650	Injection Wells (active)	75	0	Reservoir Volume (AF)	632,430	1,054,
			Injection Wells (shut-in)	0	0	Swept Zone Bbl/AF	284.5	22
API Gravity	33	33	2002 Water Injection (MMbbl)	0	0.0	SROIP Check (MMbbl)	179.9	24
Viscosity (cp)	0.97	0.97	Daily Injection - Field (Mbbl/d)	0	0.0			
			Cum Injection (MMbbl)	0	0.0			
Dykstra-Parsons	0.75	0.75	Daily Inj per Well (Bbl/d)	0	0.0	ROIP Volume Check		
			=			ROIP Check (MMbl)	212.7	24

Figure 29. Wasson-Bennett Ranch Unit Input Parameters

4. Vacuum Field, Grayburg/San Andres Unit. The Vacuum Field is located on the Artesia-Lovington uplift in Lea County, New Mexico, approximately 15 miles northwest of the city of Hobbs. The field was discovered in 1929, with primary development beginning in 1939 and waterflooding beginning in 1958. The Grayburg/San Andres Unit is located on the eastern side of the Vacuum Field and has a reservoir area of 19,200 acres, a MPZ OOIP of 999 MMbbls and a ROZ OIP of 781 MMbbls. The MPZ is at a depth of 4,500 feet and has an average net thickness of 95 feet. The ROZ is at a depth of 4,847 feet and has an estimated net thickness of 194 feet, **Figure 30**, *Vacuum–Grayburg/San Andres Unit Input Parameters*. The Grayburg/San Andres Unit has 466 active production wells and 172 active injection wells. Cumulative MPZ oil production for the Grayburg/San Andres Unit is 356 MMbbls with 25 MMbbls of this due to tertiary CO₂ flooding.

5. Robertson Field, San Andres Reservoir. The Robertson Field has a reservoir area of 6,000 acres, a MPZ OOIP of 7 MMbbls and a ROZ OIP of 94 MMbbls. The MPZ is at a depth of 4,700 feet and has an average net thickness of 2 feet. The ROZ is at a depth of 4,754 feet and has an estimated net thickness of 65 feet, **Figure 31**, *Robertson Field Input Parameters*. The Robertson Field has 3 active production wells and no active injection wells. Cumulative MPZ oil production for the Robertson Field is 2 MMbbls. CO₂ flooding has not been performed in the Robertson San Andres Reservoir.

Basin Name	Permian Ea	st New Mexico						
Field Name	VACUUM							
Reservoir	GRAYBURG	-SAN ANDRES						
Reservoir Parameters:	MPZ	ROZ	Oil Production	MPZ	ROZ	Volumes	MPZ	ROZ
rea (A)	19,200	19,200	Producing Wells (active)	466	-	OOIP (MMbl)	998.6	781.3
et Pay (ft)	95	194	Producing Wells (shut-in)	329	-	Cum P/S Oil (MMbl)	331.1	-
epth (ft)	4,500	4,847	Cum Oil (MMbbl)	355.9	-	2002 P/S Reserves (MMbl)	19.4	-
Dil-Water Contact Dip	N/A	50	2002 Production (MMbbl)	4.6	-	Ult P/S Recovery (MMbl)	350.5	
orosity	11.3%	11.3%		24.8	-	Remaining (MMbbl)	648.2	781.3
eservoir Temp (deg F)	101	101	2002 CO2-EOR (MMDDI)	2.9		Recovery Efficiency (%)	30%	0%
Pressure (psi)	1025	1025	02 CO2-LOK Reserves (WWDDI)	55.0	_	OOIP Volume Check		
	1000	1000	Water Production				1 824 000	3 718 064
8.	1 310	1 310	2002 Water Production (Mbbl)		0	Bbl/AE	548.7	210.1
²⁰¹	1.050	1.310	Doily Water (Mbbl/d)	0	00	OOIR Chook (MMbl)	1 000 0	701.2
	1.030	0.314	Daily Water (MDD/d)		0.0		1,000.9	701.3
	0.820	0.314	Injection			SDOID Volume Chee	le	
wept zone S _o	0.314	0.314	injection				<u>n</u>	
vi	0.180	0.686	Injection Wells (active)	329	0	Reservoir Volume (AF)	1,824,000	3,718,064
			Injection Wells (shut-in)	0	0	Swept Zone Bbl/AF	262.2	210.1
PI Gravity	30	30	2002 Water Injection (MMDDI)		0.0	SROIP Check (MIMDDI)	4/8.2	781.3
iscosity (cp)	1.47	1.47	Cum Injection (MMbbl)	0	0.0			
vkstra-Parsons	0.88	0.88	Daily Ini per Well (Bbl/d)	0	0.0	ROIP Volume Check		
	0.00	0.00	Daily 111 pol. 11011 (DDild)		0.0	ROIP Check (MMbl)	648.2	781.3

Figure 30. Vacuum – Grayburg/San Andres Unit Input Parameters

Basin Name	Permian wes	st Texas 8A						
Field Name	ROBERTSON	1						
Reservoir	SAN ANDRE	8						
Reservoir Parameters:	MPZ	ROZ	Oil Production	MPZ	ROZ	Volumes	MPZ	ROZ
Area (A)	6,000	6,000	Producing Wells (active)	3	-	OOIP (MMbl)	7.0	93.9
Net Pay (ft)	2	65	Producing Wells (shut-in)	1	-	Cum P/S Oil (MMbl)	2.3	-
Depth (ft)	4,700	4,754	Cum Oil (MMbbl)	2.3	-	2002 P/S Reserves (MMbl)	0.1	-
Porosity	N/A 11.0%	11.0%	CO2-EOR Cum (MMbbl)	0.0	-	Bemaining (MMbbl)	2.4	- 03.0
Reservoir Temp (deg F)	108	108	2002 CO2-EOR (MMbbl)		-	Recovery Efficiency (%)	35%	<u> </u>
Initial Pressure (psi)	-1	-1	02 CO2-EOR Reserves (MMbbl)	- 1	-			• • •
Pressure (psi)	-1	-1				OOIP Volume Check		
			Water Production			Reservoir Volume (AF)	14,491	389,711
B _{oi}	1.240	1.240	2002 Water Production (Mbbl)	0	0	Bbl/AF	481.7	240.9
B₀ @ S₀, swept	1.050	1.240	Daily Water (Mbbl/d)	0	0.0	OOIP Check (MMbl)	7.0	93.9
S _{oi}	0.700	0.350				· · · · · · · · · · · · · · · · · · ·	•	
Swept Zone S₀	0.350	0.350	Injection			SROIP Volume Chec	k	
S _{wi}	0.300	0.650	Injection Wells (active)	0	0	Reservoir Volume (AF)	14,491	389,711
			Injection Wells (shut-in)	0	0	Swept Zone Bbl/AF	284.5	240.9
API Gravity	32	32	2002 Water Injection (MMbbl)	0	0.0	SROIP Check (MMbbl)	4.1	93.9
/iscosity (cp)	1.54	1.54	Daily Injection - Field (Mbbl/d)	0	0.0			
	· · · · · ·		Cum Injection (MMbbl)	0	0.0			
Dykstra-Parsons	0.75	0.75	Daily Inj per Well (Bbl/d)		0.0	ROIP Volume Check		
			_			ROIP Check (MMbl)	4.5	93.9

Figure 31. Robertson Field Input Parameters

IV. CALIBRATING THE OIL RECOVERY MODELS AND ESTIMATING TECHNICALLY RECOVERABLE ROZ RESOURCES

When performing studies on large numbers of oil fields, such as exist in the Permian Basin, it is often useful to employ simpler numerical models, such as streamtube models, to save on computational time and costs. One of these simpler streamtube models is *CO2-PROPHET*. This model has been used with good results in recent basin-wide EOR scoping studies by Advanced Resources for determining the potential of CO₂ enhanced oil recovery for adding significant new domestic oil supplies from numerous oil basins.¹¹

This chapter discusses the comparison and calibration of the *CO2-PROPHET* model with a full-scale, industry standard compositional reservoir simulator, and presents the technically recoverable resources from applying CO₂-EOR to the remaining oil in-place in the transition and residual oil zones. As shown in the following materials, *CO2-PROPHET* provides an excellent match of oil recovery, for both the MPZ and the TZ/ROZ. As such, there is confidence in using the *CO2-PROPHET* model to estimate oil recovery from the sample of five oil fields assessed by this study and, most importantly, applying this model in future, larger scale reservoir assessment studies.

A. Background on CO2-PROPHET. The CO2-PROPHET model was developed by the Texaco Exploration and Production Technology Department (EPTD) as part of the DOE Class I cost-share program.¹²

In its simplest form, this model generates streamlines for fluid flow between injection and production wells, and then uses finite difference methods to determine oil displacement and recovery calculations along the established streamlines. Data input

¹¹ U.S. Department of Energy/Fossil Energy: "Basin-Oriented Strategies for CO2 Enhanced Oil Recovery: California, Onshore Gulf Coast, Offshore Louisiana, Oklahoma, Alaska and Illinois", April 2005.

¹² "Post Waterflood CO₂ Flood in a Light Oil, Fluvial Dominated Deltaic Reservoir" (DOE Contract No. DE-FC22-93BC14960).

requirements are less demanding and computational times are much shorter than when using full-scale reservoir simulation.

Input requirements for *CO2-PROPHET* can generally be obtained or calculated using engineering formulations. Key input parameters impacting oil recovery include:

- 1. Residual oil saturation,
- 2. Dykstra-Parsons coefficient,
- 3. Oil and water viscosity,
- 4. Reservoir pressure and temperature, and
- 5. Minimum miscibility pressure.

B. Comparison and Calibration of *CO2-PROPHET* with a Full-Scale **Reservoir Simulator.** The *CO2-PROPHET* model was compared and calibrated by Advanced Resources with an industry-standard compositional reservoir simulator. The primary reason for the comparison was to determine whether *CO2-PROPHET* could effectively model oil recovery from the TZ/ROZ. A second reason was to better understand how the absence of a gravity override function in *CO2-PROPHET* might influence the calculation of oil recovery in these low oil saturation zones.

The Wasson Denver Unit (San Andres) reservoir data set was used as the input file for modeling a simultaneous MPZ and TZ/ROZ CO₂ flood in the full-scale simulator. An analogous data set was placed into *CO2-PROPHET* to replicate the MPZ and TZ/ROZ simultaneous flood. First, for simplicity, all oil saturations in the input database for the *CO2-PROPHET* model were set at residual oil. Under this simplified condition, *CO2-PROPHET* had lower oil recoveries than the full-scale simulator.

A closer review of the two input data sets enabled us to understand the reasons for the divergence. No mobile oil saturations were initially included in the input file for *CO2-PROPHET*; however, the input data file for the full-scale reservoir simulator had higher (and mobile) oil saturation in the TZ interval. Using simple weight-averaging, a small mobile oil saturation (~3%) was added to each reservoir interval in the *CO2-*

PROPHET input file to account for the mobile oil in the TZ. An excellent match for cumulative oil recovery was obtained between *CO2-PROPHET* and the full-scale simulator, after making this adjustment. This two step comparison and match is shown on **Figure 33**.

Figure 33. Analysis of Simultaneous MPZ and TZ/ROZ Oil Recovery Simulation Results, Wasson Denver Unit

Similar CO2-PROPHET and full-scale simulator comparisons were completed for the remaining four sample oil fields (**Figures 34 through 37**), again showing an excellent match between the two models when the oil saturation modification (discussed above) was included in the CO2-PROPHET input data set.

Figure 34. Analysis of Simultaneous MPZ and TZ/ROZ Oil Recovery Simulation Results, Seminole San Andres Unit

Figure 35. Analysis of Simultaneous MPZ and TZ/ROZ Oil Recovery Simulation Results, Wasson Bennett Ranch Unit

Figure 36. Analysis of Simultaneous MPZ and TZ/ROZ Oil Recovery Simulation Results, Grayburg/Vacuum San Andres

Figure 37. Analysis of TZ/ROZ Oil RecoverySimulation Results, Robertson San Andres

Table 2 provides the model comparisons, with the ultimate oil recovery from these five sample oil fields scaled to field level. While oil recovery calculations for individual projects vary somewhat, the results are that overall the two models provide an excellent match of the aggregate oil production from the five fields.

Table 2. Comparison of Compositional Model Simulation and CO2-PROPHET
Model Simulation

	Compositional Model Simulation	CO2-PROPHET Model Simulation	
Field/Unit	Field Level Oil Recovery (MMB)	Field Level Oil Recovery (MMB)	% Difference Between Models
Seminole (San Andres Unit)	696	569	(18%)
Wasson (Denver Unit)	1,054	1,064	1%
Wasson (Bennett Ranch Unit)	172	179	4%
Vacuum (Grayburg/San Andres)	529	577	9%
Robertson (San Andres)	83	83	-
Total	2,534	2,473	(2%)

C. Technically Recoverable Resources from the MPZ and ROZ. Each model, the full-scale compositional simulator and *CO2-PROPHET*, provided estimates of 2.5 billion barrels of technically recoverable resources from applying CO₂-EOR to the remaining oil in-place in the combined MPZ and TZ/ROZ in the five study fields, **Table 3.** Of this, 1.4 billion barrels are from the TZ/ROZ and 1.1 billion barrels are from the MPZ in these five fields.

 CO_2 -EOR of the MPZ is underway in four of the five study fields, accounting for 0.65 billion barrels of past oil production and current reserves. After subtracting this oil production and reserves, the incremental oil resource from the MPZ would be 0.44 billion from the MPZ, **Table 4**.

Field/Unit	Total CO2-EOR (MMB)	MPZ CO ₂ -EOR (MMB)	TZ/ROZ CO2-EOR (MMB)
Seminole (San Andres Unit)	569	268	301
Wasson (Denver Unit)	1,064	570	494
Wasson (Bennett Ranch)	179	84	95
Vacuum (Grayburg/San Andres)	577	172	405
Robertson (San Andres)	83	-	83
Total	2,473	1,094	1,379

Table 3. Technical Oil Recovery Totals, Five Study Fields

CO₂-EOR of the TZ/ROZ is also underway in three of the five study fields, as discussed previously. However, the size of these pilot projects is small, and only limited data on the performances of these pilot projects is publicly available. Therefore, no reductions in the TZ/ROZ oil potential have been made in this study to account for the modest amount of past and ongoing TZ/ROZ development to date.

Table 4. Estimates of On-Going MPZ CO₂-EOR, Five Study Fields

	Ultimate		CO ₂ -EOR		
Field/Unit	MPZ Only CO₂-EOR (MMB)	Cum. Prod. (MMB)	Reserves (MMB)	Total (MMB)	Remaining MPZ Potential (MMB)
Seminole (San Andres Unit)	268	(141)*	(126)*	(267)*	1
Wasson (Denver Unit)	570	(169)	(142)	(311)	259
Wasson (Bennett Ranch)	84	(3)	(10)	(13)	71
Vacuum (Grayburg/San Andres)	172	(25)	(34)	(59)	113
Robertson (San Andres)	-	-	-	-	-
Total	1,094	(338)	(312)	(650)	444

*Excluding 8 MMB of estimated TZ/ROZ resource.

V. OVERCOMING BARRIERS TO RECOVERING OIL FROM RESIDUAL OIL ZONES

The five sample fields – Seminole San Andres Unit, Wasson Denver Unit, Wasson Bennett Ranch Unit, Vacuum Grayburg/San Andres and Robertson San Andres – together hold an estimated oil in-place of approximately 3.8 billion barrels in their transitional and residual oil zones (See Appendix A). However, recovering this lower saturation oil will require overcoming numerous barriers and risks.

A. Overview of Barriers. Based on discussions with industry, there are two primary barriers to producing transition and residual oil zones with CO₂-EOR - - handing increased volumes of produced water and mitigating (or accelerating) the delayed oil response.

1. High Volumes of Produced Water. The transition and residual oil zones, because of their significant thickness and low oil saturation, can hold vast volumes of water. The estimated water in-place in the TZ/ROZ for the five study fields is nine billion barrels, with slightly more than half of this water volume being mobile. As such, production wells deepened to contact the transition and residual oil zones will initially produce significant volumes of water. (The produced water issue may become further complicated by the presence of a strong bottom water aquifer. Fortunately, many of the Permian Basin oil reservoirs have rather weak bottom water aquifers below the oil column.)

Should an operator determine the oil in-place target in the TZ/ROZ is worth the costs and risks of deepening wells and injecting CO₂, several steps can be taken to improve the produced oil cut and to minimize produced water, as discussed below.

• Selective ROZ Completion. First, since the transitional zone contains both mobile and residual oil and will most likely produce some oil initially, the inclusion of the full TZ in the TZ/ROZ CO₂-EOR project will help increase initial oil production, reducing the water cut.

Second, as shown in Figures 1 and 13, the ROZ oil saturation profile grades from a moderate residual oil saturation (35%) at the top of the ROZ to nearly 0% (100% water saturation) at the base of the ROZ. Depending on a field's oil saturation profile, the operator may wish to target only the upper, higher residual oil saturation portion of the ROZ, thus reducing the volume of produced water. For example, under an unfavorable oil saturation profile (with higher oil saturation at the top and low oil saturation at the bottom of the ROZ interval), one may wish to complete the well only in the upper portion of the residual oil zone. Under a more favorable oil saturation profile (with more uniform oil saturation across the ROZ interval), one may wish to target essentially the entire residual oil zone.

 Avoiding Water Coning in Production Wells. If water coning is an issue for the main pay zone CO₂ flood, it will, most likely, also be an issue for the ROZ CO₂-EOR flood. (Again, this may be less of an issue in settings with weak bottom water aquifers.) Mitigating water coning can be difficult, but steps can be taken through use of production well back-pressure controls, use of horizontal wells, and selective ROZ completion (as is used above) to enhance oil productivity and reduce water production.

Permian Basin operators have a long history of dealing with high water cut oil production wells. Their experience in dealing with water handling issues will be most valuable when conducting a residual oil zone CO₂ flood.

2. Delayed Oil Response. Many CO_2 -EOR field pilots and projects face the economic barrier of a delayed oil response, as the injected CO_2 must first mobilize the residual oil and then "drive" the oil to the surrounding production wells. Given the significant capital and CO_2 injection costs, a delayed oil response will greatly reduce the return

5-2

on investment. However, the delay in oil response may be reduced with closer wellspacing and higher CO₂ injection rates.

To improve oil recovery and project performance, one could flood the main pay zone, transition zone and residual oil zone simultaneously. Although pattern balancing would become more complex with the additional zones, a joint MPZ/TZ/ROZ flood would have numerous benefits - - an improved oil cut, improved oil recovery efficiency, and reduced upward CO_2 (and oil) migration from the TZ/ROZ into a previously CO_2 flooded MPZ. As such, simultaneous CO_2 flooding of the MPZ and TZ/ROZ will be one of the best strategies for reducing the delay in oil production. A joint flood will improve oil recovery efficiency not only from the TZ/ROZ, but also from the MPZ, due to the balance of pressures in each zone, and will reduce out-of-zone losses of CO_2 .

Other options for reducing the delay in oil response include infill drilling (particularly by using horizontal wells) to intercept the oil bank and increasing the initial rate (and slug size) of CO_2 injection to stimulate earlier oil production.

B. Evaluating Strategies for Overcoming Barriers. The above discussion identified two primary "best practices": 1) selectively completing the upper portion of the ROZ; and 2) simultaneously CO₂ flooding the MPZ and TZ/ROZ. These two strategies for more efficiently recovering oil resources from residual oil zones were explored through reservoir modeling.

1. Performing Selective Zone Completions in the ROZ. To reduce water production and improve CO_2 utilization, the model assumes that the MPZ and TZ will be completed with the ROZ and that the primary variable will be the manner in which the ROZ is completed. Two primary ROZ completion options were explored: (1) completion of only the upper 60% of the ROZ; and (2) completion of the full ROZ interval. The two ROZ completion practices were further examined under variable oil saturation profiles and alternative vertical permeability situations.

5-3

- Methodology. Reservoir simulation was used to model the injection of one HCPV of CO₂ into the ROZ (only) zone. The Wasson Denver Unit's San Andres reservoir ROZ interval was used as the input data set. Two oil saturation profiles were used: (1) a uniform saturation through the ROZ (uniform); and, (2) a variable, high to low oil saturation through the ROZ (gradational). Finally, the vertical permeability was varied in the gradational oil saturation case.
- Results. Table 5 shows the results for the two completion schemes (partial and full) and for each of the three sensitivity cases (uniform ROZ oil saturation, gradational ROZ oil saturation and gradational ROZ oil saturation with large vertical perm). These results are representative of a single forty acre, CO₂ EOR pattern.

The partial ROZ completion case outperforms the full ROZ completion case (in terms of CO_2 -oil and water-oil ratios) and produces nearly as much oil. These results suggest that, in general, a partial ROZ completion should be considered. However, the full interaction of permeability and aquifer strength (not explored here) in combination with the oil saturation profile should be reviewed prior to making a final ROZ completion decision.

Project	Cumulative Oil Production (MB)	Cumulative Gross CO ₂ Injection (Bcf)	Gross CO₂/Oil Ratio (Mcf/B)	Cumulative Water Production (MB)	Producing Water-Oil Ratio (B/B)			
1. Uniform Oil Saturation	1			-				
Partial ROZ Completion	273	6	22.0	2,439	8.9			
Full ROZ Completion	280	10	35.7	3,965	14.1			
2. Gradational Oil Satura	tion							
Partial ROZ Completion	421	6	14.3	2,239	5.3			
Full ROZ Completion	427	10	23.4	3,747	8.8			
3. Gradational Oil Satura	3. Gradational Oil Saturation/High Vertical Perm							
Partial ROZ Completion	373	6	16.1	2,886	7.7			
Full ROZ Completion	441	10	22.7	4,296	9.7			

Table 5. Results from Two ROZ Completion Schemes (Partial And Full)

2. Using Simultaneous MPZ and TZ/ROZ CO₂ Flooding. Significant efficiencies may also be gained by simultaneously CO_2 flooding the MPZ and the TZ/ROZ. Even where a MPZ CO₂ flood is already underway, the TZ/ROZ flood can be added. In fact, many of the Seminole San Andres Unit, the Wasson Denver Unit and the Wasson Bennett Ranch Unit patterns are now being developed using joint MPZ and TZ/ROZ CO₂ floods after initially CO₂ flooding the MPZ only.

Methodology. Reservoir simulation was used to gain further understanding of simultaneously versus separately flooding the MPZ and TZ/ROZ zones. A 40 acre field pattern was modeled using an industry-standard compositional simulator. The input data drew on information from the Wasson Denver Unit's San Andres reservoir. The stacked pay included a 141 foot main pay zone, a 50 foot transition zone and a 150 foot residual oil zone. A weak Carter-Tracy aquifer was applied to the bottom of the reservoir to model water influx from the aquifer. Permeability was allowed to vary based on the Dykstra-Parsons coefficient, with an average permeability of 5 md.

Development of the reservoir started with a 2 HCPV of water flush into the main pay zone, simulating primary and secondary recovery, to reach residual oil saturation. Following the MPZ flush, 1 HCPV of CO₂ was injected using a coarsely tapered WAG scheme, which consisted of larger CO₂ slugs in the first 0.6 HCPV than in the remaining 0.4 HCPV of CO₂. Initially, this CO₂ flooding process was performed separately—first, in the main pay zone, and then followed by the transitional and residual oil zones. Next, both the main pay zone and the TZ/ROZ were CO₂ flooded simultaneously.

 Results. Figure 32 shows the comparison of results for a forty acre pattern. The simultaneous MPZ+TZ/ROZ flood has a 25% higher oil recovery than the separate zone CO₂ flooding scheme. Further, oil production is accelerated, which should provide a superior economic return. Water production over the life of the each project is similar, Table 6.

A closer look at the reasons for the higher oil recovery efficiency from simultaneous flooding of the MPZ and TZ/ROZ shows a uniform distribution of pressure between the two zones, which limits out of zone flow and losses. In the separate case, each of the two flooding stages is plagued by out of zone flow (particularly upward flow by the injected CO_2), reducing the overall oil recovery and CO_2 utilization efficiency.

Figure 32. Comparison of Simultaneous and Separate MPZ-ROZ CO2 Flooding, Sample Oil Reservoir

Table 6.	Comparison of Separate	vs. Simultaneous	MPZ and TZ/RO	Z CO ₂ -EOR
	Flooding:	Sample Oil Reserve	voir	

CO ₂ -EOR Strategy	Duration (Years)	Cumulative CO ₂ Injection (Bcf)	Cumulative Oil (MMB)	Cumulative Water (MMB)
Separate MPZ and TZ/ROZ	65.0	18.8	1.2	7.6
Simultaneous MPZ and TZ/ROZ	32.5	18.8	1.5	7.6

VI. ECONOMICALLY RECOVERABLE OIL RESOURCES IN TRANSITION AND RESIDUAL OIL ZONES

In the previous chapters of this report, we presented the technically recoverable oil resource from the transition and residual oil zones. In this section, we will examine the question: *How much of the TZ/ROZ resource is economically recoverable from the five oil fields studied: Seminole, Wasson (Denver and Bennett Ranch Units), Vacuum and Robertson?*

A. Basic Economic Model. The basic economic model used in the analysis draws on the previously published economic models in the six state/region reports on "Basin Oriented Strategies for CO_2 Enhanced Recovery."¹³ To reflect the specific cost and economic requirements of recovering oil from the TZ/ROZ of Permian Basin oil fields, four changes overall were made to the basic CO_2 –EOR economic model.

- 1. <u>Well Deepening.</u> A key requirement for targeting TZ/ROZ resources is deepening the existing production and injection wells. This involves:
 - Deepening of an existing well by 100 to 300 feet (depending on TZ/ROZ thickness)
 - Emplacement and perforation of well tubulars
 - Additional well workovers
- <u>CO₂ Injection</u>. The costs of injecting CO₂ were estimated using the following pricing formula for Permian Basin oil fields:
 - Cost of Purchased CO₂ (per Mcf): 4 percent of oil price (\$/Bbl)
 - Cost of Recycled CO₂ (per Mcf): 1 percent of oil price (\$/Bbl)

¹³ U.S. Department of Energy/Fossil Energy: Basin-Oriented Strategies for CO₂ Enhanced Oil Recovery: California, Onshore Gulf Coast, Offshore Louisiana, Oklahoma, Alaska, and Illinois, April 2005.

- <u>Oil Price.</u> The oil price was assumed to be \$35 per barrel (flat), with no basis differential. The oil gravity adjustment was based on a marker 40° API crude, using \$0.25 per °API, above or below 40° API.
- 4. <u>Economic Hurdle.</u> The minimum economic threshold rate of return (ROR), before taxes, was set at 25%

B. Individual Versus Simultaneous Flooding. As set forth previously, based strictly on technically recoverable oil, a joint Main Pay Zone/Residual Oil Zone CO₂ flood was shown to be preferable to independently CO₂ flooding the MPZ and TZ/ROZ. To explore the economic implication of this choice, the Wasson Denver Unit simulations, discussed earlier, were used as input into the cost model.

In the individual zone CO_2 flood case, the MPZ is flooded first, which includes the drilling and re-working of wells, plus drilling new wells (as needed), to fully develop the field, and installation of a CO_2 recycle plant and trunkline. Following the completion of the MPZ flood, all wells are deepened and re-worked, and a new CO_2 recycle plant is installed for the TZ/ROZ flood. For the simultaneous MPZ/TZ/ROZ flood case, oil wells are drilled, deepened, and/or re-worked prior to flooding and only one larger CO_2 recycle plant is installated. **Table 7** shows the results of these two CO_2 –EOR flooding options.

The comparison of the individual CO_2 floods with the simultaneous CO_2 flood clearly shows the inefficiency of the individual zone CO_2 flooding scheme.

- First, the simultaneous MPZ and TZ/ROZ CO₂-EOR flood recovers an additional 151 million barrels of oil.
- Second, even though each of the CO₂-EOR flooding options injects 1 HCPV (13 Tcf of CO₂), the simultaneous CO₂-EOR flood requires less purchased (net) CO₂ due to fewer out-of-zone losses. This saves the simultaneous CO₂-EOR flood over \$800 million.

 Finally, the largest single cost savings from conducting a simultaneous CO₂-EOR flood is \$1,800 million of lower well O&M costs due to fewer required years for operating costs.

	MPZ Only	TZ/ROZ Only Elood	Individual HPZ and TZ/ROZ Flows Total	Simultaneous MPZ and TZ/ROZ Flood
	11000	11000	110W3 10tal	TERROETIOOU
Oil Recovery (MMB)	570	337	907	1,064
% 00IP*	24%	11%	17%	20%
Net CO ₂ Injection (Bcf)	2,396	3,011	5,407	4,613
Gross CO ₂ Injection (Bcf)	6,563	6,564	13,127	13,176
Capital Investment (106\$)	474	651	1,125	1,067
CO ₂ Costs (10 ⁶ \$)	4,813	5,459	10,272	9,455
O&M Costs (10 ⁶ \$)	2,719	2,730	5,449	3,632
Total Costs (10 ⁶ \$)	8,006	8,803	16,846	14,154
	Above	Below		Above
Economic Threshold (ROR>25%)**	Threshold	Threshold	n/a	Threshold

Table 7. Economic Comparison of Individual Zone versus Simultaneous 2	one
CO ₂ -EOR: Wasson Denver Unit (San Andres Reservoir)	

*using MPZ/TZ/ROZ OOIP's (see Table B-2)

*Assumes long-term oil price of \$35 per barrel, adjusted for gravity and location differentials; minimum threshold rate of return of 25% (real), before tax.

Operated independently, the main pay zone flood has a rate of return (ROR) above the minimum economic threshold. However, the TZ/ROZ-only flood does not reach this economic threshold. The simultaneous CO₂-EOR flood in the MPZ and TZ/ROZ does achieve an economic return, exceeding the minimum economic threshold. The detailed cash flows for this example are contained in Appendix C.

Applying the economic model to the simultaneous MPZ/TZ/ROZ flood in the remaining four fields (Wasson, Bennet Ranch Unit; Seminole; Robertson; and Vacuum) shows that simultaneous CO_2 -EOR floods in the MPZ and TZ/ROZ will meet or exceed the economic threshold, **Table 8**. Detailed cash flows are provided in Appendix C.

	Wasson, Denver Unit	Wasson, Bennett Ranch Unit	Seminole San Andres Unit	Vacuum	Robertson		
Oil Recovery (MMB)	1,064	179	569	577	83		
% OOIP	20%	21%	22%	17%	28%		
Net CO ₂ Injection (Bcf)	4,613	628	1,847	1,970	263		
Gross CO ₂ Injection (Bcf)	13,176	2,469	5,620	7,761	792		
Capex (10 ⁶ \$)	1,067	281	485	672	183		
CO ₂ Costs (10 ⁶ \$)	9,455	1,523	3,906	4,785	553		
O&M Costs (10 ⁶ \$)	3,632	848	1,315	2,239	519		
Total Costs (10 ⁶ \$)	14,154	2,652	5,706	7,696	1,255		
Economic Threshold	above	above	above	above	above		
(ROR>25%)**	threshold	threshold	threshold	threshold	threshold		
*using MPZ/TZ/ROZ OOIP's (see Table B-2) *Assumes long-term oil price of \$35 per barrel, adjusted for gravity and location differentials; minimum threshold rate of return of 25% (real) before tax							

Table 8. Simultaneous MPZ and TZ/ROZ CO₂-EOR Flooding Results for Five Study Fields

Based on the results shown above, each of the projects exceeds the 25% minimum rate of return hurdle rate, suggesting co-development of MZ and TZ/ROZ with CO₂ flooding is the optimum method for recovering oil from residual oil zones.

The Robertson Field (with a thin MPZ) also surpassed the minimum rate of return hurdle even though it is essentially a transition and residual oil target. Its strong economic performance is due to minimal upward losses of CO_2 and a favorable pressure balance, resulting in superior CO_2 contact with the reservoir's crude.

C. Economically Recoverable Resources. This study suggests that nearly 2.5 billion barrels of residual ("stranded") oil can be recovered from these five San Andres Reservoirs through joint CO₂-EOR flooding of the main and residual oil zones, **Table 9**. This resource potential includes nearly 1.4 billion barrels of additional oil recovery from the TZ/ROZ and 1.1 billion barrels of oil from the MPZ (based on CO_2 -PROPHET results). (Of the 1.1 billion barrels estimated as recoverable due to CO₂-EOR in the MPZ in these five study fields, 0.6 billion barrels has already been produced or proven.)

These 1.4 billion barrels of oil represents a significant oil target that may remain unproduced if not jointly flooded with the MPZ.

Field/Unit	Total CO ₂ -EOR (MMB) MPZ CO ₂ -EOR (MMB)		TZ/ROZ CO₂-EOR (MMB)
Seminole (San Andres Unit)	569	268	301
Wasson (Denver Unit)	1,064	570	494
Wasson (Bennett Ranch)	179	84	95
Vacuum	577	172	405
Robertson	83	-	83
Total	2,473	1,094	1,379

Table 9. CO2-EOR Project Recovery Totals for the Five Study Fields

D. Marginal Economic Analysis. Because the MPZ-only CO_2 -EOR project is economic on its own, the question arises: *Does adding the TZ/ROZ and conducting a simultaneous CO*₂-EOR flood in both zones help or hurt overall economics? This question can be answered using marginal economic analyses.

To assess the marginal economics of adding the transition and residual oil zones to an MPZ only flood (thus creating a simultaneous flood), a marginal cost analysis was performed for the Wasson Denver Unit, first for the MPZ-only, and then for the simultaneous (MPZ and TZ/ROZ) CO₂-EOR flood. **Table 10** shows the results, in terms of capital investment, CO₂ costs and well operating and maintenance costs (both in total and in dollars-per-barrel) for conducting these two flooding strategies.

The MPZ-only CO₂-EOR flood is estimated to cost \$8,006 million, resulting in a cost per barrel of oil recovered of \$14.05. The simultaneous flood costs \$14,104 million and yields \$13.30 per barrel of oil recovered. On a marginal basis, the additional costs of conducting the TZ/ROZ CO2-EOR flood are equal to the difference between the simultaneous flood and the MPZ-only flood. As such, the TZ/ROZ CO₂ flood costs \$6,148 million and, with additional oil recovery of 494 million barrels, it has a lower cost

of \$12.44 per barrel of oil recovered. This shows that adding the TZ/ROZ project to the MPZ flood leads to a lower cost per barrel of oil recovered.

	Cost for MPZ Only Flood		Marginal Cost for TZ/ROZ Flood		Cost for Simultaneous MPZ & TZ/ROZ Flood	
		Cost (\$/bbl)		Costs (\$/bbl)		Cost (\$/bbl)
Oil Recovery (MMB)	570		494		1,064	
Capex (10 ⁶ \$)	\$474	0.83	\$593	1.20	\$1,067	1.00
CO ₂ Costs (10 ⁶ \$)	4,813	8.44	4,642	9.40	9,455	8.89
O&M Costs (10 ⁶ \$)	2,719	4.77	913	1.85	3,632	3.41
Total	\$8,006	14.05	\$6,148	12.44	\$14,154	13.30

Table 10. Marginal Economic Analysis – MPZ Only and Simultaneous MPZ andTZ/ROZ Floods

APPENDIX A

OIL IN-PLACE FOR THE TZ AND ROZ

CALCULATING THE OIL IN-PLACE FOR THE TZ AND ROZ

Due to the lack of deep TZ/ROZ penetrating wells in several of the study fields and a lack of suitable well logs to yield net pay or oil saturation profiles for the TZ/ROZ, six key assumptions were made to calculate the oil in-place in the transition and residual zones. These were: 1) the reservoir area of the TZ/ROZ is the same as the main pay zone; 2) the properties of the crude oil are the same for each of the three oil zones; 3) the reservoir porosity is the same for each of the three zones; 4) the reservoir area is assumed to be a 2:1 (length to width) rectangle; 5) the resulting ROZ is triangular in profile and wedge-shaped in 3-dimensions, with the largest ROZ height dimension at the aquifer entry point and essentially zero ROZ height dimension at the exit point; and 6) the residual oil saturation in the ROZ is the same as in the water swept zone of the main pay zone.

These assumptions, plus a simple calculation, can be used to convert the reservoir area (in acres), to the length and width of the ROZ for each reservoir. The OWC tilt (derived from a mapping of the lifted OWC), in feet per mile, is then be used to determine the maximum height of the ROZ wedge. (The average thickness of the ROZ is half of the maximum height.) Given these reservoir volume parameters and the above assumptions, the oil in-place in the ROZ can be calculated. When log-based values were available for oil saturation or the ROZ thickness, such as for the Seminole (San Andres Unit) and Wasson (Denver Unit) fields, these log-derived values were used.

For the transitional zone, the net pay is assumed to be a constant 50 feet, based on available saturation profiles and capillary pressure data, and the average oil saturation is estimated to be 50%.

Table A-1 shows the key input parameters and calculated oil in-place for the five reservoirs examined by this study.

A-1

Field	Area (acres)	OWC Tilt (ft/mile)	Average Net Pay (ft)	S _{or} (%)	Porosity (%)	ROZ OIP (MMbbl)
Seminole (San Andres Unit)	15,700	20	100	32.0	13	365
Wasson (Denver Unit)	27,848	30	150	35.0	12	1,039
Wasson (Bennett Ranch Unit)	7,027	30	150	35.0	11	240
Vacuum (Grayburg/San Andres Unit)	19,200	50	194	31.4	11.3	781
Robertson (San Andres)	6,000	30	65	35.0	11	94

Table A-1. Key Inputs for Calculating ROZ Oil In-Place for the Five Study Fields

Table A-2 presents the individual MPZ, TZ, and ROZ oil in-place estimates as well as the total TZ/ROZ oil in-place for each of the five study fields.

Table A-2. Oil In-Place in the Main Pay, Transitional, and Residual Oil Zones for
Five Study Fields

Field	ROIP MPZ (MMbbl)	TZ (MMbbl)	ROZ (MMbbl)	Total TZ/ROZ (MMbbl)
Seminole (San Andres Unit)	868	285	365	650
Wasson (Denver Unit)	1,273	495	1,039	1,534
Wasson (Bennett Ranch Unit)	213	114	240	354
Vacuum (Grayburg/San Andres Unit)	648	321	781	1,102
Robertson (San Andres)	5	103	94	197
Total	3,007	1,318	2,519	3,837

The oil in-place from **Table A-2** was used as input data for calculating of oil recovery.

It is significant to note that the oil in-place in the TZ/ROZ (3.8 billion bbls) in the five study fields is larger than the estimated remaining oil in-place (ROIP) of the MPZ (3.0 billion bbls) in these five fields.

APPENDIX B

ADJUSTING THE ROZ OIL IN-PLACE VALUES FOR COMPARISONS OF OIL RECOVERY EFFICIENCY

ADJUSTING THE ROZ OIL IN-PLACE VALUES

Application of CO₂-EOR to the MPZ plus TZ/ROZ in the five study oil fields shows a recovery of nearly 2.5 billion barrels (assuming simultaneous application of CO₂-EOR). As a percentage the MPZ OOIP and TZ/ROZ OIP this results in 28% oil recovery efficiency (**Table B-1**).

	MPZ OOIP	Original MPZ,		Recovery Efficiency		
Project	and TZ/ROZ OIP (MMbbl)	TZ, and ROZ OOIP (MMbbl)	Total EOR Oil (MMbbl)	% OOIP/OIP	% Original OOIP	
Seminole (San Andres Unit)	2,003	2,643	569	28%	22%	
Wasson (Denver Unit)	3,906	5,390	1,064	27%	20%	
Wasson (Bennett Ranch Unit)	642	834	179	28%	21%	
Vacuum (Grayburg/San Andres Unit)	2,101	3,360	577	27%	17%	
Robertson (San Andres)	204	298	83	41%	28%	
Total	8,856	12,525	2,473	28%	20%	

Table B-1. CO2-EOR Project Recovery Totals

While a 28% of OOIP recovery factor appears high, this value requires some adjustments to make it comparable with standard industry reporting practices of oil recovery efficiency. Due to hydrodynamic forces, or "mother nature's" waterflood, a portion of the original oil in-place in the ROZ has been swept from the reservoir, leaving behind a smaller remaining OIP. To put the recovery in terms of the original oil in-place, the ROZ OOIP needs to be calculated prior to "mother nature's" waterflood. This calculation is provided in **Table B-2** and summarized on **Table B-1**. (Note that due to capillary forces, the oil in-place in the transitional zone is deemed to be both the original and the remaining oil in-place and thus is not altered.)

Project	Residual ROZ OIP (MMbbl)	Original ROZ OIP (MMbbl)	TZ OOIP (MMbbl)	Total ROZ/TZ OOIP (MMbbl)	MPZ OOIP (MMbbl)	Total OOIP (MMbbl)
Seminole (San Andres Unit)	365	1,005	285	1,290	1,353	2,643
Wasson (Denver Unit)	1,039	2,523	495	3,018	2,372	5,390
Wasson (Bennett Ranch Unit)	240	480	114	594	288	834
Vacuum	781	2,040	321	2,361	999	3,360
Robertson	94	188	103	291	7	298
Total	2,519	6,236	1,318	7,554	4,971	12,525

Table B-2. CO₂-EOR Project Recovery Totals Restated to True OOIP

Adjusting the OIP in the ROZ to original conditions increases the OOIP and reduces the overall recovery efficiency to 20%, **Table B-1**.

APPENDIX C

ECONOMIC ANALYSES OF FIVE PERMIAN BASIN SAN ANDRES RESERVOIRS

- 1. Seminole (San Andres Unit)
- 2. Wasson (Denver Unit)
 - Simultaneous MPZ & TZ/ROZ
 - Individual MPZ
 - Individual TZ/ROZ
- 3. Wasson (Bennett Ranch Unit)
- 4. Vacuum
- 5. Robertson
| Basin | Permian (West Texas 8A) | Pattern Oil Production | Project Oil Production |
|-------------------------------|---|--|---|
| Field | SEMINOLE (SAN ANDRES UNIT) | 400 | 50,000 |
| Formation | SAN ANDRES | 300 | 40,000 |
| Technology Case | MPZ + TZ / ROZ (Simultaneous) | <u>a</u> ²⁵⁰ | ā 30,000 |
| Depth (ft) | 5.262 | | |
| Total OOIP (MMBIs) | 2,643 | | 15,000 |
| Cumulative Recovery (MMbls) * | 1,119 | 50 | 10,000 |
| EUR (MMbls) * | 1,124 | | 5,000 |
| Total ROIP (MMbls) | 1,519 | 0 5 10 15 20 25 30 35 | 0 10 20 30 40 50 |
| API Gravity | 35 | 19013 | Years |
| Patterns | 196 | Net Cashflow | Project CO2 Injection & Production |
| Existing Injectors Used | 184 | \$1,000,000 | 300,000 |
| Converted Producers Used | 12 | | 250,000 |
| New Injectors Drilled | 0 | \$ \$400,000 | g 200,000 |
| Existing Producers Used | 225 | | § 150,000 |
| New Producers Drilled | 0 | | 8 100,000 |
| | | \$ (200,000) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 50,000 |
| Pattern Detail | | £ \$(600,000) | 0 5 10 15 20 25 30 35 40 |
| Cum Oil (Mbbl) | 2,903 | \$(800,000)
Years | Years |
| Cum H2O (Mbw) | 12,226 4.21 Bw/Bbl | | |
| Gross CO2 (MMct) | 28,674 9.88 Mcf/Bbl | | Design the Duration of the Descention of COO |
| Purchased CO2 (MMcf) | 9,756 3.36 Mcf/Bbl | Cumulative Cashflow | 250.000 |
| Recycled CO2 (MMcf) | 18,919 6.52 Mcf/Bbl | \$12,000,000 | 200,000 |
| | | | E 150 000 |
| | | | |
| | 568.99 | | 8 100,000 |
| % OOIP Recovered | 21.5% | | 50,000 |
| Cum H2O (MMbw) | 2,396 | | |
| Gross CO2 (MMcf) | 5,620,182 | 0 2 4 6 8 10 12 14 16 18 20 22 | Years |
| Purchased CO2 (MMct) | 1,846,971 | \$(2,000,000) - Years | CO2 Purchased — CO2 Recycled |
| Recycled CO2 (MMct) | 3,773,212 | | |
| Payback Period (per pattern) | 3 years | Pattern-Level Cumulative Cashflow | |
| Project Length | 31 years | \$60,000 | Assumptions: |
| Field Economics | ¢/DDI | S \$50,000 | Oil Price \$ 35.00 |
| | | | CO2 Durshees Cest 4% of oil price |
| Total Capital Investment (*M) | | | CO2 Polichase Cost 4% of oil price |
| Total CO2 Cost (\$M) | | | CO2 Recycle Cost |
| Total O2 COSt (\$10) | | | Depugling Plant Costa 1 Year before Breakthru |
| | | | |
| | $\varphi = (0, 107, 140) \varphi = 10.03$ | 0 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 | |
| | | S(10,000) J. Years | |

*Includes "Mother Nature's" waterflood oil displacement of 639 million barrels

Field Cashflow Model					Pattern			Field					
State	Permian (West Texas	s 8A)	Г	Existir	ng Injectors Used	0.94	4	Existing Injectors Us	ed	184			
Field	SEMINOLE (SAN AN	NDRÉS	UNIT)	Converted	Producers Used	0.06	6 Co	nverted Producers Us	ed	12			
Formation	SAN ANDRES		,	New	Injectors Needed	0.00)	New Injectors Need	ed	0			
Depth	526	2		New P	roducers Needed	0.00)	New Producers Need	ed	0			
Distance from Trunkline		0 miles	s —	Existing	Producers Used	1 1	- 5 F	xisting Producers Us	ed	225			
# of Patterns	196.0	0					-						
Miscibility:	Miscible	•											
Wiscibility.	MISCIDIE		0	4	2	2	4	E	6		7		0
CO2 Injection (MMcf)			U	51 544	102.099	154 636	206.1	90 257 72	4 26	7 724	257 729		0 257 724
H2O Injection (Mbw)				12 995	25 774	38,650	200,1	<u>44</u> 64.42	2 4	1,124	64 420	<u> </u>	64 420
				12,005	23,114	30,039	51,5	44 04,43	5 0	14,433	04,429		04,423
Oil Production (Mbbl)				290	1,666	15,296	25,5	19 32,79	5 3	38,820	43,042	L	35,723
H2O Production (MBw)				36,977	72,838	94,750	112,5	24 128,87	4 10)7,306	86,338	L	78,082
CO2 Production (MMcf)					-	2,815	21,7	87 50,18	4 8	32,657	117,776	L	151,151
CO2 Purchased (MMcf)			ſ	51 544	103 088	151 822	184.3	93 207 54	0 17	75 067	139 952		106 573
CO2 Recycled (MMcf)				-	-	2 815	21.7	87 50.18	4 8	32 657	117 776		151 151
		-				_,	,.		<u> </u>		,		
Oil Price (\$/Bbl)	\$ 35.00)	\$	35.00	\$ 35.00	\$ 35.00	\$ 35	00 \$ 35.0	0 \$	35.00 5	\$ 35.00	\$	35.00
Gravity Adjustment	35		¢	33 75	¢ 33.75	¢ 33.75	¢ 33	75 \$ 33 7	с Ф 5 Ф	33 75 (\$ 33.75	¢	33 75
	55	•	Ψ Ψ	0 700	φ 50.70 ¢ 50.20	¢ 516.005	ψ 00.	70 0 00.7	0 ¢ 10/	00.70 4	¢ 1450.654	Ψ ¢ 4	1 205 650
Gloss Revenues (\$1VI)	40 59/		¢	9,790	\$ 50,228 \$ (7,028)	\$ 510,235 ¢ (64,530	⇒ 001,2)¢ (107.6	73	2 3 I,3 2) ¢ (4(0,107 3	↓ 1,452,054	¢ I	(450,700)
Royalty (\$M)	-12.5%		\$	(1,224)	\$ (7,028)	\$ (64,529) \$ (107,6	59) \$ (138,35	3) \$ (16	3,771) 3	\$ (181,582)	\$	(150,706)
Severance Taxes (\$IVI)	-5.0%		\$	(428)	\$ (2,460)	\$ (22,585) \$ (37,6	81) \$ (48,42	3) \$ (5	97,320) \$	\$ (63,554)	\$	(52,747)
Ad Valorum (\$M)	-2.5%		\$	(214)	\$ (1,230)	\$ (11,293) \$ (18,8	40) \$ (24,21	2) \$ (2	28,660) \$	\$ (31,777)	\$	(26,374)
Net Revenue(\$M)			\$	7,924	\$ 45,509	\$ 417,827	\$ 697,0	93 \$ 895,83	4 \$ 1,06	0,416 8	\$ 1,175,742	\$	975,823
Capital Costs (\$M)					•	-	-	-			•		
New Well - D&C		\$	- \$	-	\$ -	\$ -	\$ -	\$ -	\$	- 9	\$-	\$	-
Exisiting Well Deepening		\$	(13,417) \$	(13,417)	\$ (13,417)	\$ (13,417)\$ (13,4	17) \$ -	\$	- 9	\$-	\$	-
Reworks - Producers to Producers		\$	(3,517) \$	(3,517)	\$ (3,517)	\$ (3,517)\$ (3,5	17) \$ -	\$	- 9	\$-	\$	-
Reworks - Producers to Injectors		\$	(70) \$	(70)	\$ (70)	\$ (70)\$ (70) \$ -	\$	- 9	\$-	\$	-
Reworks - Injectors to Injectors		\$	(2,460) \$	(2,460)	\$ (2,460)	\$ (2,460)\$ (2,4	60)\$-	\$	- 9	\$-	\$	-
Surface Equipment (new wells only)		\$	- \$	-	\$-	\$ -	\$-	\$-	\$	- 9	\$-	\$	-
CO2 Recycling Plant		\$	- \$	-	\$ (384,250)	\$ -	\$-	\$-	\$	- 9	\$-	\$	-
Water Injection Plant		\$	- \$	-	\$-	\$ -	\$-	\$-	\$	- 9	\$-	\$	-
Trunkline Construction		\$	(3,819) \$	-	\$-	\$-	\$-	\$-	\$	- 3	\$-	\$	-
Total Capital Costs		\$	(23,284) \$	(19,465)	\$ (403,715)	\$ (19,465)\$ (19,4	65)\$-	\$	- 9	\$-	\$	-
CO2 Costs (\$M)													
Total CO2 Cost (\$M)			\$	(72,162)	\$ (144,323)	\$ (213.535) \$ (265.7	76) \$ (308.12	1) \$ (27	(4,024) \$	\$ (237,154)	\$	(202,105)
O&M Costs (\$M)				. , , ,	, , ,		, ,				, , ,		
Operating & Maintenance (\$M)			\$	(2,628)	\$ (5,257)	\$ (7,885)\$ (10,5	14) \$ (13,14	2)\$ (*	3,142) \$	\$ (13,142)	\$	(13,142)
Lifting Costs (\$M)			\$	(9,317)	\$ (18,626)	\$ (27,512) \$ (34.5	11) \$ (40,41	7)\$ (3	36,531) \$	\$ (32,345)	\$	(28,451)
G&A	20%	%		(2,389)	(4,777)	(7,079) (9.0	05) (10.71	2)	(9,935)	(9,097)		(8,319)
Total O&M Costs			\$	(14,334)	\$ (28,659)	\$ (42,476)\$ (54,0	29) \$ (64,27	1)\$ (5	9,608) \$	\$ (54,585)	\$	(49,912)
Net Cash Flow (\$M)		\$	(23,284) \$	(98,037)	\$ (531,189)	\$ 142,351	\$ 357.8	23 \$ 523,44	2 \$ 72	26,784 \$	\$ 884,003	\$	723,805
Cum. Cash Flow		\$	(23,284) \$	(121,322)	\$ (652,511)	\$ (510,160) \$ (152.3	37) \$ 371.10	4 \$ 1.09	7,888 \$	\$ 1,981,891	\$ 2	2,705,697
Discount Factor	25%	•	1.00	0.80	0.64	0.51	0.	41 0.3	3	0.26	0.21	. –	0.17
Disc. Net Cash Flow		\$	(23,284) \$	(78,430)	\$ (339,961)	\$ 72,884	\$ 146.5	64 \$ 171.52	1 \$ 19	90,522 \$	\$ 185.389	\$	121,434
Disc. Cum Cash Flow		\$	(23.284) \$	(101,714)	\$ (441.675)	\$ (368,792) \$ (222.2	27) \$ (50.70	6) \$ 13	39.816	\$ 325.205	\$	446.639

		9		10		11		12	13		14		15	16			17		18		19
CO2 Injection (MMcf)		256,270		251,025		245,776		240,527	235,282		231,488		231,488	23	1,492		231,492		231,488		231,492
H2O Injection (Mbw)		65,158		67,781		70,403		73,030	75,656		77,549		77,549	7	7,549		77,549		77,549		77,549
Oil Production (Mbbl)		30,317		27,750		25,527		23,575	21,223		20,039		19,024	1	8,663		18,569		18,056		17,907
H2O Production (MBw)		74,829		73,567		74,441		75,864	77,930		79,062		79,615	7	8,706		77,839		77,698		77,220
CO2 Production (MMcf)		169,869		178,415		181,712		183,244	184,295		184,691		185,737	18	8,438		190,473		191,888		193,225
CO2 Purchased (MMcf)		86,401		72,610		64,065		57,283	50,987		46,797		45,750	4	3,053		41,019		39,600		38,267
CO2 Recycled (MMcf)		169,869		178,415		181,712		183,244	184,295		184,691		185,737	18	8,438		190,473		191,888		193,225
Oil Price (\$/Bbl)	\$	35.00	\$	35.00	\$	35.00	\$	35.00 \$	35.00	\$	35.00	\$	35.00 \$:	35.00	\$	35.00	\$	35.00	\$	35.00
Gravity Adjustment	\$	33.75	\$	33.75	\$	33.75	\$	33.75 \$	33.75	\$	33.75	\$	33.75 \$:	33.75	\$	33.75	\$	33.75	\$	33.75
Gross Revenues (\$M)	\$	1,023,208	\$	936,552	\$	861,538	\$	795,652 \$	716,272	\$	676,318	\$	642,052 \$	62	9,880	\$	626,705	\$	609,374	\$	604,346
Royalty (\$M)	\$	(127,901)	\$	(117,069)	\$	(107,692)	\$	(99,457) \$	(89,534)	\$	(84,540)	\$	(80,256) \$	(7	8,735))\$	(78,338)	\$	(76,172)	\$	(75,543)
Severance Taxes (\$M)	\$	(44,765)	\$	(40,974)	\$	(37,692)	\$	(34,810) \$	(31,337)	\$	(29,589)	\$	(28,090) \$	(2	7,557))\$	(27,418)	\$	(26,660)	\$	(26,440)
Ad Valorum (\$M)	\$	(22,383)	\$	(20,487)	\$	(18,846)	\$	(17,405) \$	(15,668)	\$	(14,794)	\$	(14,045) \$	(1	3,779))\$	(13,709)	\$	(13,330)	\$	(13,220)
Net Revenue(\$M)	\$	828,159	\$	758,022	\$	697,307	\$	643,981 \$	579,733	\$	547,395	\$	519,661 \$	50	9,809	\$	507,239	\$	493,212	\$	489,143
Capital Costs (\$M)																					
New Well - D&C	\$	-	\$	-	\$	-	\$	- \$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Exisiting Well Deepening	\$	-	\$	-	\$	-	\$	- \$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Reworks - Producers to Producers	\$	-	\$	-	\$	-	\$	- \$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Reworks - Producers to Injectors	\$	-	\$	-	\$	-	\$	- \$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Reworks - Injectors to Injectors	\$	-	\$	-	\$	-	\$	- \$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Surface Equipment (new wells only)	\$	-	\$	-	\$	-	\$	- \$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
CO2 Recycling Plant	\$	-	\$	-	\$	-	\$	- \$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Water Injection Plant	\$	-	\$	-	\$	-	\$	- \$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Trunkline Construction	\$	-	\$	-	\$	-	\$	- \$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Total Capital Costs	\$	-	\$	-	\$	-	\$	- \$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
CO2 Costs (\$M)																					
Total CO2 Cost (\$M)	\$	(180 415)	\$	(164 099)	\$	(153 289)	\$	(144 332) \$	(135,886)	\$	(130 158)	\$	(129.059) \$	(12	6 228	\$	(124 092)	\$	(122 601)	\$	(121 202)
O&M Costs (\$M)	Ψ	(100,410)	Ψ	(104,000)	Ψ	(100,200)	Ψ	(144,002) ψ	(100,000)	Ψ	(100,100)	Ψ	(120,000) ψ	(12)	0,220)	/Ψ	(124,052)	Ψ	(122,001)	Ψ	(121,202)
Operating & Maintenance (\$M)	\$	(13,142)	\$	(13,142)	\$	(13,142)	\$	(13,142) \$	(13,142)	\$	(13,142)	\$	(13,142) \$	(1:	3,142))\$	(13,142)	\$	(13,142)	\$	(13,142)
Lifting Costs (\$M)	\$	(26,287)	\$	(25,329)	\$	(24,992)	\$	(24,860) \$	(24,788)	\$	(24,775)	\$	(24,660) \$	(24	4,342))\$	(24,102)	\$	(23,938)	\$	(23,782)
G&A		(7,886)		(7,694)		(7,627)		(7,600)	(7,586)		(7,584)		(7,560)	(7,497))	(7,449)		(7,416)		(7,385)
Total O&M Costs	\$	(47,315)	\$	(46,166)	\$	(45,761)	\$	(45,602) \$	(45,516)	\$	(45,501)	\$	(45,362) \$	(4	4,981))\$	(44,693)	\$	(44,497)	\$	(44,309)
Net Cash Flow (\$M)	\$	600,429	\$	547,757	\$	498,257	\$	454,047 \$	398,331	\$	371,736	\$	345,240 \$	33	8,600	\$	338,454	\$	326,115	\$	323,632
Cum. Cash Flow	\$	3,306,126	\$	3,853,883	\$	4,352,139	\$	4,806,186 \$	5,204,517	\$	5,576,253	\$	5,921,493 \$	6,26	0,093	\$	6,598,547	\$	6,924,662	\$	7,248,293
Discount Factor		0.13		0.11		0.09		0.07	0.05		0.04		0.04	, -	0.03		0.02		0.02		0.01
Disc. Net Cash Flow	\$	80,588	\$	58,815	\$	42,800	\$	31,202 \$	21,898	\$	16,349	\$	12,147 \$	1	9,531	\$	7,621	\$	5,875	\$	4,664
Disc. Cum Cash Flow	\$	527,228	\$	586,042	\$	628,842	\$	660,044 \$	681,943	\$	698,292	\$	710,439 \$	71	9,970	\$	727,591	\$	733,466	\$	738,130

Miscibility:

2		20		21	22		23		24		25		26		27		28	29		30		31
CO2 Injection (MMcf)		231,492		231,488	231,488		231,492		198,607		152,308		106,012		59,713		13,414	-		-		-
H2O Injection (Mbw)		77,549		77,549	77,549		77,545		93,990		117,137		140,289		126,381		110,873	 78,921		40,262		1,603
Oil Production (Mbbl)		17,624		17,252	16,836		16,339		15,484		14,402		13,167		10,110		7,162	 4,532		2,203		78
H2O Production (MBw)		76,891		76,789	76,699		76,558		77,220		87,365		103,649		89,666		74,225	58,388		32,932		1,376
CO2 Production (MMcf)		194,538		195,553	196,666		198,042		200,359		183,899		154,801		115,303		75,272	 33,532		10,690		302
CO2 Purchased (MMcf)		36,954		35,935	34,821		33,449		-		-		-		-		-	 -		-		-
CO2 Recycled (MMcf)		194,538		195,553	196,666		198,042		198,607		152,308		106,012		59,713		13,414	 -		-		-
	¢	05.00	¢	05.00 ¢	05.00	¢	05.00	¢	05.00	¢	05.00	¢	05.00	¢	05.00	¢	25.00	 05.00	¢	05.00	¢	05.00
Oil Price (\$/Bbl)	\$	35.00	\$	35.00 \$	35.00	\$	35.00	\$	35.00	\$	35.00	\$	35.00	\$	35.00	\$	35.00	\$ 35.00	\$	35.00	\$	35.00
Gravity Adjustment	\$	33.75	\$	33.75 \$	33.75	\$	33.75	\$	33.75	\$	33.75	\$	33.75	\$	33.75	\$	33.75	\$ 33.75	\$	33.75	\$	33.75
Gross Revenues (\$M)	\$	594,821	\$	582,252 \$	568,229	\$	551,426	\$	522,585	\$	486,070	\$	444,396	\$	341,202	\$	241,712	\$ 152,939	\$	74,353	\$	2,646
Royalty (\$M)	\$	(74,353)	\$	(72,782) \$	(71,029)	\$	(68,928)	\$	(65,323)	\$	(60,759)	\$	(55,549)	\$	(42,650)	\$	(30,214)	\$ (19,117)	\$	(9,294)	\$	(331)
Severance Taxes (\$M)	\$	(26,023)	\$	(25,474) \$	(24,860)	\$	(24,125)	\$	(22,863)	\$	(21,266)	\$	(19,442)	\$	(14,928)	\$	(10,575)	\$ (6,691)	\$	(3,253)	\$	(116)
Ad Valorum (\$M)	\$	(13,012)	\$	(12,737) \$	(12,430)	\$	(12,062)	\$	(11,432)	\$	(10,633)	\$	(9,721)	\$	(7,464)	\$	(5,287)	\$ (3,346)	\$	(1,626)	\$	(58)
Net Revenue(\$M)	\$	481,433	\$	471,260 \$	459,910	\$	446,311	\$	422,967	\$	393,413	\$	359,683	\$	276,160	\$	195,636	\$ 123,785	\$	60,179	\$	2,142
Capital Costs (\$M)																						
New Well - D&C	\$	-	\$	- \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-
Exisiting Well Deepening	\$	-	\$	- \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-
Reworks - Producers to Producers	\$	-	\$	- \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-
Reworks - Producers to Injectors	\$	-	\$	- \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-
Reworks - Injectors to Injectors	\$	-	\$	- \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-
Surface Equipment (new wells only)	\$	-	\$	- \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-
CO2 Recycling Plant	\$	-	\$	- \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-
Water Injection Plant	\$	-	\$	- \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-
Trunkline Construction	\$	-	\$	- \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-
Total Capital Costs	\$	-	\$	- \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-
CO2 Costs (\$M)																						
Total CO2 Cost (\$M)	\$	(119,824)	\$	(118,752) \$	(117,583)	\$	(116,144)	\$	(69,512)	\$	(53,308)	\$	(37,104)	\$	(20,900)	\$	(4,695)	\$ -	\$	-	\$	-
O&M Costs (\$M)																						
Operating & Maintenance (\$M)	\$	(13,142)	\$	(13,142) \$	(13,142)	\$	(13,142)	\$	(13,142)	\$	(13,142)	\$	(13,142)	\$	(13,142)	\$	(10,514)	\$ (7,885)	\$	(5,257)	\$	(2,628)
Lifting Costs (\$M)	\$	(23,629)	\$	(23,510) \$	(23,384)	\$	(23,224)	\$	(23,176)	\$	(25,442)	\$	(29,204)	\$	(24,944)	\$	(20,347)	\$ (15,730)	\$	(8,784)	\$	(364)
G&A		(7,354)		(7,330)	(7,305)		(7,273)		(7,264)		(7,717)		(8,469)		(7,617)		(6,172)	(4,723)		(2,808)		(598)
Total O&M Costs	\$	(44,125)	\$	(43,983) \$	(43,831)	\$	(43,640)	\$	(43,582)	\$	(46,301)	\$	(50,815)	\$	(45,703)	\$	(37,033)	\$ (28,338)	\$	(16,849)	\$	(3,590)
Net Cash Flow (\$M)	\$	317,484	\$	308,525 \$	298,496	\$	286,527	\$	309,873	\$	293,805	\$	271,763	\$	209,557	\$	153,908	\$ 95,446	\$	43,330	\$	(1,449)
Cum. Cash Flow	\$	7,565,778	\$	7,874,303 \$	8,172,799	\$	8,459,326	\$	8,769,199	\$	9,063,004	\$	9,334,767	\$	9,544,324	\$	9,698,232	\$ 9,793,678	\$	9,837,009	\$	9,835,560
Discount Factor		0.01		0.01	0.01		0.01		0.00		0.00		0.00		0.00		0.00	0.00		0.00		0.00
Disc. Net Cash Flow	\$	3,660	\$	2,846 \$	2,203	\$	1,691	\$	1,463	\$	1,110	\$	821	\$	507	\$	298	\$ 148	\$	54	\$	(1)
Disc. Cum Cash Flow	\$	741.790	\$	744.636 \$	746.838	\$	748.530	\$	749.993	\$	751,103	\$	751.924	\$	752.431	\$	752,729	\$ 752.876	\$	752,930	\$	752.928

Field Cashflow Model State Field Formation Depth Distance from Trunkline

of Patterns Miscibility:

-	32	33	34		35		36	37		38	То	tals
CO2 Injection (MMcf)	-	-	-		-		-	-		-		5,620,182
H2O Injection (Mbw)	-	-	-		-		-	-		-		2,223,561
Oil Production (Mbbl)	-	-	-		-		-	-		-		568,988
H2O Production (MBw)	-	-	-		-		-	-		-		2,396,218
CO2 Production (MMcf)		-	-		-		-			-		4,017,314
CO2 Purchased (MMcf)	-	-	-		-		-	-		-		1,846,971
CO2 Recycled (MMcf)		-	-		-		-			-		3,773,212
Oil Price (\$/Bbl)	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-		
Gravity Adjustment	\$ (1.25)	\$ (1.25)	\$ (1.25)	\$	(1.25)	\$	(1.25)	\$ (1.25)	\$	-		
Gross Revenues (\$M)	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	19,203,345
Royalty (\$M)	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	(2,400,418)
Severance Taxes (\$M)	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	(840,146)
Ad Valorum (\$M)	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	(420,073)
Net Revenue(\$M)	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	15,542,707
Capital Costs (\$M)												
New Well - D&C	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	-
Exisiting Well Deepening	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	(67,086)
Reworks - Producers to Producers	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	(17,585)
Reworks - Producers to Injectors	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	(352)
Reworks - Injectors to Injectors	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	(12,302)
Surface Equipment (new wells only)	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	-
CO2 Recycling Plant	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	(384.250)
Water Injection Plant	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	-
Trunkline Construction	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	(3.819)
Total Capital Costs	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	(485,395)
·												
CO2 Costs (\$M)												
Total CO2 Cost (\$M)	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	(3,906,383)
O&M Costs (\$M)												
Operating & Maintenance (\$M)	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	(354,840)
Lifting Costs (\$M)	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	(741,301)
G&A	-	-	-		-		-	-		-	\$	(219,228)
Total O&M Costs	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	(1,315,369)
Net Cash Flow (\$M)	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	9,835,560
Cum. Cash Flow	\$ 9,835,560	\$ 9,835,560	\$ 9,835,560	\$	9,835,560	\$	9,835,560	\$ 9,835,560	##	######		
Discount Factor	0.00	0.00	0.00	-	0.00	-	0.00	0.00		0.00		
Disc. Net Cash Flow	\$ -	\$ -	\$ -	\$	-	\$	-	\$ -	\$	-	\$	752,928
Disc. Cum Cash Flow	\$ 752,928	\$ 752,928	\$ 752,928	\$	752,928	\$	752,928	\$ 752,928	\$7	52,928		

Basin	Permian (West Texas 8A)	Pattern Oil Production	Project Oil Production
Field	WASSON (DENVER UNIT)	140	80,000
Formation	SAN ANDRES		60,000
Technology Case	MPZ + TZ / ROZ (Simultaneous)		\$\bar{a}\$ \$50,000 \$\bar{a}\$ \$\bar{a}\$
Depth (ft)	5.380		
Total OOIP (MMBIs)	5.390	40	30,000
Cumulative Recovery (MMbls) *	2.526		20,000
EUR (MMbls) *	2.583		10,000
Total ROIP (MMbls)	2,807	0 5 10 15 20 25 30 35	
API Gravity	33	Tears	Years
Patterns	696	Net Cashflow	Project CO2 Injection & Production
Existing Injectors Used	696	\$1,500,000	500.000
Converted Producers Used	0		
New Injectors Drilled	0		5 350,000
Existing Producers Used	750		250,000
New Producers Drilled	0		8 200,000
	<u> </u>		
Pattern Detail		\$(500,000) -	
Cum Oil (Mbbl)	1,529	\$(1,000,000)	Years
Cum H2O (Mbw)	7,403 4.84 Bw/Bt	Tears	← CO2 Injection −■ CO2 Production
Gross CO2 (MMcf)	18,930 12.38 Mcf/B		
Purchased CO2 (MMcf)	6,752 4.42 Mcf/B	Cumulative Cashflow	Project Purchased & Recycled CO2
Recycled CO2 (MMcf)	12,178 7.97 Mcf/B	S16,000,000	450,000
			350,000
Field Detail			250,000
Cum Oil (MMbbl)	1,064.11		8 200,000 9 150,000
% OOIP Recovered	19.7%	E \$4,000,000	
Cum H2O (MMbw)	5,152		
Gross CO2 (MMcf)	13,175,558	\$ (2,000,000) 0 2 4 6 8 10 12 14 16 18 20 22	0 5 10 15 20 25 30 35 40 Years
Purchased CO2 (MMcf)	4,612,615	\$(4,000,000) Years	▲ CO2 Durshaged ■ CO2 Descular
Recycled CO2 (MMcf)	8,562,944		
Payback Period (per pattern)	4 years	Pattern-Level Cumulative Cashflow	
Project Length	37 years		Assumptions:
Field Economics	\$/BBI		Oil Price \$ 35.00
Total Net Revenue (\$M)	\$ 28,637,147		CO2 Purchase Cost 4% of oil price
Total Capital Investment (\$M)	\$ (1,067,389) \$ 1.00	§ \$10,000	CO2 Recycle Cost 1% of oil price
Total CO2 Cost (\$M)	\$ (9,454,691) \$ 8.89		
Total O&M Costs (\$M)	\$ (3,631,625) \$ 3.41		Recycling Plant Costs 1 Year before Breakthru
	\$ (14,153,705) \$ 13.30	S. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Well O&M Prod Wells Only
		\$(5,000) Years	

*Includes "Mother Nature's" waterflood oil displacement of 1,484 million

barrels

35.00

Field Cashflow Model					Patt	ern			F	Field					
State	Permian (West Texas	s 8A))	Existi	ing In	jectors Used	1.00		Exis	sting Injectors Used		696			
Field	WASSON (DENVER	UNI	Т)	Converted	d Pro	ducers Used	0.00		Convert	ed Producers Used		0			
Formation	SAN ANDRES		· ·	New	Injec	tors Needed	0.00		Ne	w Injectors Needed		0			
Depth	538	0		New P	rodu	cers Needed	0.00		New	Producers Needed		0			
Distance from Trunkline	1	0 mil	les	Existing	g Pro	ducers Used	1.08		Existi	ng Producers Used		750			
# of Patterns	696.0	0	L		0	I				Ŭ					
Miscibility:	Miscible														
			0	1		2	3		4	5		6	7		8
CO2 Injection (MMcf)				94 907	1	189 813	284 720		379 626	474 547	<u> </u>	474 547	474 547	T	474 547
H2O Injection (Mbw)				23.734		47,453	71,187		94,907	118,640		118.626	118,640	1	118.626
		1			1				10,105					<u> </u>	
Oil Production (Mbbl)		_		1,100	_	4,956	22,008		40,465	54,037		64,283	70,032	<u> </u>	62,250
H2O Production (MBW)		_		58,798		114,005	152,006		182,352	211,278		180,111	152,215	<u> </u>	140,592
CO2 Production (IVIIVICI)				84		84	167		15,423	50,878		97,148	150,211	L	206,768
CO2 Purchased (MMcf)				94,823		189,730	284,553		364,203	423,669		377,399	324,336		267,779
CO2 Recycled (MMcf)				84		84	167		15,423	50,878		97,148	150,211		206,768
Oil Price (\$/Bbl)	\$ 35.00)		\$ 35.00	\$	35.00 \$	35.00	\$	35.00	\$ 35.00	\$	35.00	\$ 35.00	\$	35.00
Gravity Adjustment	33			\$ 33.25	\$	33.25 \$	33.25	\$	33.25	\$ 33.25	\$	33.25	33.25	\$	33.25
Gross Revenues (\$M)				\$ 36.564	\$	164.771 \$	731,750	\$	1.345.476	\$ 1.796.745	\$	2.137.395	6 2.328.548	\$	2.069.820
Royalty (\$M)	-12.5%			\$ (4.571)	\$	(20,596) \$	(91 469)	ŝ	(168 184)	\$ (224 593)	\$	(267 174)	(291.069)	ŝ	(258 728)
Severance Taxes (\$M)	-5.0%			\$ (1,600)	\$	(7 209) \$	(32,014)	ŝ	(58 865)	\$ (78,608)	ŝ	(93,511)	(101 874)	ŝ	(90,555)
Ad Valorum (\$M)	-2.5%			\$ (800)	\$	(3,604) \$	(16,007)	ŝ	(29,432)	\$ (39,304)	ŝ	(46,756)	(50,937)	ŝ	(45,277)
Net Revenue(\$M)	21070			\$	\$ \$	133 362 \$	592 260	ŝ	1 088 995	\$ 1 454 240	ŝ	1 729 954	1 884 669	ŝ	1 675 261
Capital Costs (\$M)				φ 20,001	Ψ	100,002 \$	002,200	Ψ	1,000,000	φ 1,101,210	Ψ	1,720,001	1,001,000	<u></u>	1,010,201
New Well - D&C		\$	-	s -	\$	- \$	_	\$	-	s -	\$	- 9	- 8	\$	
Exisiting Well Deepening		¢ ¢	(46 814)	Ψ \$ (46.814)	۰ ۶	(46 814) \$	(46.814)	¢ ¢	(46 814)	φ \$	¢ ¢	_ (-	φ ¢	_
Reworks - Producers to Producers		ŝ	(12 043)	\$ (12 043)) \$	(12 043) \$	(12 043)	ŝ	(12.043)	φ \$-	ŝ	- 9	-	\$	-
Reworks - Producers to Injectors		ŝ	(12,010)	\$ (12,010) \$ -	, ¢ \$	- \$	- (12,010)	ŝ	-	\$-	\$	- 9	-	ŝ	-
Reworks - Injectors to Injectors		ŝ	(9.410)	¢ \$ (9.410)	۰ \$	(9.410) \$	(9.410)	ŝ	(9.410)	\$-	ŝ	- 9	-	ŝ	-
Surface Equipment (new wells only)		ŝ	-	\$ (0,110) \$ -	\$ \$	- \$	-	ŝ	-	\$-	ŝ	- 9	-	ŝ	-
CO2 Recycling Plant		ŝ	(721 910)	¢ \$-	ŝ	- \$	_	ŝ	-	\$-	ŝ	- 9	-	ŝ	-
Water Injection Plant		¢ ¢	(721,510)	Ψ \$-	¢ ¢	Ψ - \$	_	¢ ¢	-	φ \$	¢ ¢	_ (-	φ ¢	_
		Ψ ¢	(4 146)	φ ¢	¢	Ψ _ €	_	¢	_	φ ¢	¢	_ 0	-	¢	_
Total Capital Costs		Ψ Φ	(70/ 323)	Ψ - \$ (68.267)	Ψ	- Ψ (68.267) \$	(68 267)	Ψ ¢	(68 267)	φ - ¢ _	Ψ ¢	_ 0		Ψ Φ	_
Total Capital Costs		φ	(194,323)	φ (00,207)	φ	(00,207) \$	(00,207)	φ	(00,207)	φ -	φ		-	φ	-
CO2 Costs (\$M)															
Total CO2 Cost (\$M)				¢ (122.701)	¢	(265 651) \$	(209 422)	¢	(515 292)	¢ (610.044)	¢	(562 260)	(506 644)	¢	(447 250)
0&M Costs (\$M)				φ (132,701)	ψ	(203,031) \$	(390,432)	φ	(313,202)	φ (010,944)	φ	(302,300)	(300,044)	φ	(447,239)
Operating & Maintenance (\$M)				¢ (8.023)	2	(17.846) \$	(26 768)	¢	(35 601)	¢ (11 611)	¢	(11 611)	(11 614)		(44 614)
				φ (0,520)	, Ψ	(17,040) ψ	(20,700)	Ψ	(00,001)	φ (++,01+)	Ψ	(++,01+) (, (++,01+)	Ψ	(++,01+)
Lifting Costs (\$M)				\$ (14,974))\$	(29,740) \$	(43,503)	\$	(55,704)	\$ (66,329)	\$	(61,098) \$	5 (55,562)	\$	(50,711)
G&A	20%	6		(4,779))	(9,517)	(14,054)		(18,279)	(22,189)		(21,142)	(20,035)	1	(19,065)
Total O&M Costs				\$ (28,677))\$	(57,103) \$	(84,326)	\$	(109,674)	\$ (133,131)	\$	(126,855)	6 (120,211)	\$	(114,389)
Net Cash Flow (\$M)		\$	(794,323)	\$ (200,130)) \$	(257,658) \$	41,235	\$	395,771	\$ 710,165	\$	1.040.739	6 1.257.814	\$	1.113.612
Cum. Cash Flow		\$	(794.323)	\$ (994,453)) \$	(1.252.111) \$	(1.210.876)	\$	(815,105)	\$ (104.939)	\$	935.800	6 2,193,614	\$	3.307.226
Discount Factor	25%	Ŷ	1.00	0.80	, +	0.64	0.51	Ŧ	0.41	0.33	Ŧ	0.26	0.21	Ŧ	0.17
Disc. Net Cash Flow		\$	(794,323)	\$ (160,104))\$	(164,901) \$	21,113	\$	162,108	\$ 232,707	\$	272,824	6 263,783	\$	186,833
Disc. Cum Cash Flow		\$	(794,323)	\$ (954,427))\$	(1,119,328) \$	(1,098,216)	\$	(936,108)	\$ (703,401)	\$	(430,577)	6 (166,795)	\$	20,039

CO2 Injection (MMcf)474,547474,533474,533465,902456,242446,581436,921427,260426,230426,230426,230H2O Injection (Mbw)118,640118,626118,640122,955127,786132,616137,446142,276142,777142,791142,791Oil Production (Mbbl)52,46447,06443,58441,37039,00436,52634,42432,47530,68029,20428,397H2O Production (MBw)136,472132,574129,345127,396128,718131,126134,217138,295141,539142,443142,222CO2 Production (MMcf)250,546278,971299,155314,341321,789326,800328,763327,649325,575328,275331,574CO2 Purchased (MMcf)224,001195,562175,378151,561134,453119,782108,15899,612100,65697,95594,656CO2 Purchased (MMcf)224,001195,562175,378151,561134,453119,782108,15899,612100,65697,95594,657
H2O Injection (Mbw)118,640118,626118,640122,955127,786132,616137,446142,276142,777142,791142,791Oil Production (Mbbl)52,46447,06443,58441,37039,00436,52634,42432,47530,68029,20428,397H2O Production (Mbw)136,472132,574129,345127,396128,718131,126134,217138,295141,539142,443142,222CO2 Production (MMcf)250,546278,971299,155314,341321,789326,800328,763327,649325,575328,275331,574CO2 Purchased (MMcf)224,001195,562175,378151,561134,453119,782108,15899,612100,65697,95594,657CO2 Purchased (MMcf)224,001195,562175,378151,561134,453119,782108,15899,612100,65697,95594,657CO2 Purchased (MMcf)224,001195,562175,378151,561134,453119,782108,15899,612100,65697,95594,657
Oil Production (Mbbl)52,46447,06443,58441,37039,00436,52634,42432,47530,68029,20428,397H2O Production (MBw)136,472132,574129,345127,396128,718131,126134,217138,295141,539142,443142,222CO2 Production (MMcf)250,546278,971299,155314,341321,789326,800328,763327,649325,575328,275331,574CO2 Purchased (MMcf)224,001195,562175,378151,561134,453119,782108,15899,612100,65697,95594,656CO2 Purchased (MMcf)260,540070,744090,475044,944044,700090,700090,700097,640095,57594,656
H2O Production (MBw) 136,472 132,574 129,345 127,396 128,718 131,126 134,217 138,295 141,539 142,443 142,222 CO2 Production (MMcf) 250,546 278,971 299,155 314,341 321,789 326,800 328,763 327,649 325,575 328,275 331,574 CO2 Purchased (MMcf) 224,001 195,562 175,378 151,561 134,453 119,782 108,158 99,612 100,656 97,955 94,656 CO2 Purchased (MMcf) 224,001 195,562 175,378 151,561 134,453 119,782 108,158 99,612 100,656 97,955 94,656 CO2 Purchased (MMcf) 224,001 195,562 175,378 151,561 134,453 119,782 108,158 99,612 100,656 97,955 94,656 CO2 Purchased (MMcf) 224,001 195,562 175,378 151,561 134,453 119,782 108,158 99,612 100,656 97,955 926,657 CO2 Purchased (MMcf) 224
CO2 Production (MMcf) 250,546 278,971 299,155 314,341 321,789 326,800 328,763 327,649 325,575 328,275 331,574 CO2 Purchased (MMcf) 224,001 195,562 175,378 151,561 134,453 119,782 108,158 99,612 100,656 97,955 94,656 CO2 Purchased (MMcf) 224,001 195,562 175,378 151,561 134,453 119,782 108,158 99,612 100,656 97,955 94,656 CO2 Purchased (MMcf) 224,001 195,562 175,378 151,561 134,453 119,782 108,158 99,612 100,656 97,955 94,656 CO2 Purchased (MMcf) 224,001 195,562 175,378 151,561 134,453 119,782 108,158 99,612 100,656 97,955 94,656 CO2 Purchased (MMcf) 224,001 195,562 175,378 104,779 200,770 202,749 202,775 202,775 202,775 202,775 202,775 202,775 202,775 202,775
CO2 Purchased (MMcf) 224,001 195,562 175,378 151,561 134,453 119,782 108,158 99,612 100,656 97,955 94,656 CO2 Purchased (MMcf) 224,001 195,562 175,378 151,561 134,453 119,782 108,158 99,612 100,656 97,955 94,656 CO2 Purchased (MMcf) 200,056 270,000 200,056 97,955 94,656
CO2 Recycled (MMCr) 250,546 278,971 299,155 314,341 321,789 326,800 328,763 327,649 325,575 328,275 331,574
Oil Price (\$/Bbi) \$ 35.00 \$ 35
Gravity Adjustment \$ 33.25 \$ 33.25 \$ 33.25 \$ 33.25 \$ 33.25 \$ 33.25 \$ 33.25 \$ 33.25 \$ 33.25 \$ 33.25 \$ 33.25 \$ 33.25 \$ 33.25 \$
Gross Revenues (\$M) \$ 1,744,444 \$ 1,564,862 \$ 1,449,152 \$ 1,375,560 \$ 1,296,878 \$ 1,214,492 \$ 1,144,603 \$ 1,079,806 \$ 1,020,099 \$ 971,038 \$ 944,194
Royalty (\$M) \$ (218,055) \$ (195,608) \$ (181,144) \$ (171,945) \$ (162,110) \$ (151,812) \$ (143,075) \$ (134,976) \$ (127,512) \$ (121,380) \$ (118,024) \$
Severance Taxes (\$M) \$ (76,319) \$ (68,463) \$ (63,400) \$ (60,181) \$ (56,738) \$ (53,134) \$ (50,076) \$ (47,242) \$ (44,629) \$ (42,483) \$ (41,308) \$
Ad Valorum (\$M) \$ (38,160) \$ (34,231) \$ (31,700) \$ (30,090) \$ (28,369) \$ (26,567) \$ (25,038) \$ (23,621) \$ (22,315) \$ (21,241) \$ (20,654) \$
Net Revenue(\$M) \$ 1,411,909 \$ 1,266,560 \$ 1,172,907 \$ 1,113,344 \$ 1,049,660 \$ 982,980 \$ 926,413 \$ 873,968 \$ 825,643 \$ 785,934 \$ 764,207
Capital Costs (\$M)
New Well - D&C \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$
Exisiting Well Deepening \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$
Reworks - Producers to Producers \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$
Reworks - Producers to Injectors \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$
Reworks - Injectors to Injectors \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$
Surface Equipment (new wells only) \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$
CO2 Recycling Plant \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$
Water Injection Plant \$ - \$
Trunkline Construction \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$
Total Capital Costs \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$
U2 20515 (\$M) Tatal CO2 Cost (\$M) \$ (401.202) \$ (271.427) \$ (260.222) \$ (222.205) \$ (200.964) \$ (282.074) \$ (266.480) \$ (264.422) \$ (264.960) \$ (252.022) \$ (248.560)
TURIE COS COST (SIM)
Operating & Maintenance (\$M) \$ (44,614) \$ (4
Lifting Costs (\$M) \$ (47.234) \$ (44.909) \$ (43.232) \$ (42.192) \$ (41.931) \$ (41.913) \$ (42.160) \$ (42.693) \$ (43.055) \$ (42.912) \$ (42.654)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Total O&M Costs \$ (110,217) \$ (107,428) \$ (105,415) \$ (104,166) \$ (103,853) \$ (103,832) \$ (104,129) \$ (104,768) \$ (105,202) \$ (105,031) \$ (104,722) \$ (105,031) \$ (104,722) \$ (105,031) \$ (104,722) \$ (105,031) \$
Net Cash Flow (\$M) \$ 900 400 \$ 787 706 \$ 717 259 \$ 686 973 \$ 644 947 \$ 597 073 \$ 555 796 \$ 515 067 \$ 465 572 \$ 428 870 \$ 410 914
Cum Cash Flow \$ 4.207.656 \$ 4.905.332 \$ 5.712.501 \$ 6.399.564 \$ 7.044.510 \$ 7.641.583 \$ 8.107.379 \$ 8.712.446 \$ 9.178.018 \$ 9.606.888 \$ 10.017.807
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Disc. Net Cash Flow \$ 120,850 \$ 84,579 \$ 61,612 \$ 47,208 \$ 35,456 \$ 26,260 \$ 19,555 \$ 14,498 \$ 10,484 \$ 7,726 \$ 5,92
Disc. Cum Cash Flow \$ 140.888 \$ 225.467 \$ 287.079 \$ 334.288 \$ 369.744 \$ 396.004 \$ 415.559 \$ 430.057 \$ 440.541 \$ 448.267 \$ 454.188

		20		21		22		23		24		25		26		27		28		29		30		31
CO2 Injection (MMcf)		426,230		426,230		426,244		426,244		426,244		426,244		426,244		426,230		426,230		426,230		396,636		311,390
H2O Injection (Mbw)		142,791		142,791		142,791		142,791		142,777		142,791		142,777		142,791		142,791		142,791		157,588		200,211
Oil Production (Mbbl)		27,812	1	27,269		26,838		26,281		25,529		24,360		22,926		21,312		19,752		18,291		17,163		16,537
H2O Production (MBw)		142,193		141,706		141,093		140,508		140,105		140,091		140,300		140,634		140,968		141,218		143,014		155,514
CO2 Production (MMcf)		333,662		336,767		339,829		343,156		346,789		350,756		355,099		359,665		364,105		368,407		376,425		371,525
CO2 Purchased (MMcf)		92,568		89,464		86,415		83,088		79,455		75,488		71,145		66,565		62,125		57,824		20,212		-
CO2 Recycled (MMcf)		333,662		336,767		339,829		343,156		346,789		350,756		355,099		359,665		364,105		368,407		376,425		311,390
	¢	25.00	¢	25.00	¢	25.00	¢	25.00	¢	25.00	¢	25.00	¢	25.00	¢	25.00	¢	25.00	¢	25.00	¢	25.00	¢	25.00
	Ð	35.00	¢	35.00	¢	35.00	¢	35.00	¢	35.00	¢	35.00	¢	35.00	¢	35.00	Ф Ф	35.00	¢	35.00	¢	35.00	Ф Ф	35.00
Gravity Adjustment	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	33.25
Gross Revenues (\$M)	\$	924,754	\$	906,704	\$	892,356	\$	873,842	\$	848,849	\$	809,970	\$	762,297	\$	708,608	\$	656,770	\$	608,172	\$	570,682	\$	549,854
Royalty (\$M)	\$	(115,594)	\$	(113,338)	\$	(111,544)	\$	(109,230)	\$	(106,106)	\$	(101,246)	\$	(95,287)	\$	(88,576)	\$	(82,096)	\$	(76,021)	\$	(71,335)	\$	(68,732)
Severance Taxes (\$M)	\$	(40,458)	\$	(39,668)	\$	(39,041)	\$	(38,231)	\$	(37,137)	\$	(35,436)	\$	(33,351)	\$	(31,002)	\$	(28,734)	\$	(26,608)	\$	(24,967)	\$	(24,056)
Ad Valorum (\$M)	\$	(20,229)	\$	(19,834)	\$	(19,520)	\$	(19,115)	\$	(18,569)	\$	(17,718)	\$	(16,675)	\$	(15,501)	\$	(14,367)	\$	(13,304)	\$	(12,484)	\$	(12,028)
Net Revenue(\$M)	\$	748,473	\$	733,863	\$	722,250	\$	707,266	\$	687,037	\$	655,569	\$	616,985	\$	573,530	\$	531,573	\$	492,239	\$	461,896	\$	445,038
Capital Costs (\$M)																								
New Well - D&C	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Exisiting Well Deepening	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Reworks - Producers to Producers	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Reworks - Producers to Injectors	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Reworks - Injectors to Injectors	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Surface Equipment (new wells only)	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
CO2 Recycling Plant	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Water Injection Plant	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Trunkline Construction	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Total Capital Costs	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
CO2 Costs (\$M)																								
Total CO2 Cost (\$M)	\$	(246,377)	\$	(243,118)	\$	(239,922)	\$	(236,428)	\$	(232,614)	\$	(228,448)	\$	(223,888)	\$	(219,074)	\$	(214,412)	\$	(209,896)	\$	(160,045)	\$	(108,987)
O&M Costs (\$M)																								
Operating & Maintenance (\$M)	\$	(44,614)	\$	(44,614)	\$	(44,614)	\$	(44,614)	\$	(44,614)	\$	(44,614)	\$	(44,614)	\$	(44,614)	\$	(44,614)	\$	(44,614)	\$	(44,614)	\$	(44,614)
Lifting Costs (\$M)	\$	(42,501)	\$	(42,244)	\$	(41,983)	\$	(41,697)	\$	(41,409)	\$	(41,113)	\$	(40,806)	\$	(40,486)	\$	(40,180)	\$	(39,877)	\$	(40,044)	\$	(43,013)
G&A		(17,423)		(17,372)		(17,319)		(17,262)		(17,204)		(17,145)		(17,084)		(17,020)		(16,959)		(16,898)		(16,932)		(17,525)
Total O&M Costs	\$	(104,538)	\$	(104,229)	\$	(103,916)	\$	(103,573)	\$	(103,227)	\$	(102,872)	\$	(102,504)	\$	(102,120)	\$	(101,753)	\$	(101,389)	\$	(101,590)	\$	(105,152)
Net Cash Flow (\$M)	\$	397,558	\$	386,516	\$	378,413	\$	367,264	\$	351,196	\$	324,250	\$	290,592	\$	252,335	\$	215,409	\$	180,954	\$	200,261	\$	230,899
Cum. Cash Flow	\$ '	10,415,361	\$	10,801,877	\$ 1	1,180,290	\$1	1,547,554	\$1	1,898,751	\$1	12,223,000	\$1	2,513,592	\$	12,765,928	\$ 1	2,981,336	\$1	3,162,290	\$1	3,362,551	\$ 1	3,593,450
Discount Factor		0.01		0.01		0.01		0.01		0.00		0.00		0.00		0.00		0.00	•	0.00		0.00		0.00
Disc. Net Cash Flow	\$	4,584	\$	3,565	\$	2,792	\$	2,168	\$	1,658	\$	1,225	\$	878	\$	610	\$	417	\$	280	\$	248	\$	229
Disc. Cum Cash Flow	\$	458,772	\$	462,337	\$	465,129	\$	467,297	\$	468,956	\$	470,181	\$	471,059	\$	471,669	\$	472,086	\$	472,366	\$	472,613	\$	472,842

-		32		33		34		35		36		37		38	То	tals
CO2 Injection (MMcf)		226,144		140,898		55,652		-		-		-		-		13,175,558
H2O Injection (Mbw)		242,834		250,003		221,453		178,092		106,920		35,733		-		4,979,880
Oil Production (Mbbl)		16,133		14,324		11,150		7,962		4,649		1,503		-		1,064,114
H2O Production (MBw)		183,257		185,220		156,962		127,090		86,388		30,318		-		5,152,279
CO2 Production (MMcf)		326,340		260,749		185,470		105,555		37,584		8,964		-		9,125,047
CO2 Purchased (MMcf)		-		-		-		-		-		-		-		4,612,615
CO2 Recycled (MMcf)		226,144		140,898		55,652		-		-				-		8,562,944
			_		_		_				_					
Oil Price (\$/Bbl)	\$	35.00	\$	35.00	\$	35.00	\$	35.00	\$	35.00	\$	35.00	\$	-		
Gravity Adjustment	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	-		
Gross Revenues (\$M)	\$	536,432	\$	476,262	\$	370,735	\$	264,744	\$	154,589	\$	49,987	\$	-	\$	35,381,804
Royalty (\$M)	\$	(67,054)	\$	(59,533)	\$	(46,342)	\$	(33,093)	\$	(19,324)	\$	(6,248)	\$	-	\$	(4,422,725)
Severance Taxes (\$M)	\$	(23,469)	\$	(20,836)	\$	(16,220)	\$	(11,583)	\$	(6,763)	\$	(2,187)	\$	-	\$	(1,547,954)
Ad Valorum (\$M)	\$	(11,734)	\$	(10,418)	\$	(8,110)	\$	(5,791)	\$	(3,382)	\$	(1,093)	\$	-	\$	(773,977)
Net Revenue(\$M)	\$	434,174	\$	385,475	\$	300,064	\$	214,278	\$	125,120	\$	40,458	\$	-	\$	28,637,147
Capital Costs (\$M)																
New Well - D&C	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Exisiting Well Deepening	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(234,069)
Reworks - Producers to Producers	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(60,214)
Reworks - Producers to Injectors	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Reworks - Injectors to Injectors	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(47,050)
Surface Equipment (new wells only)	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
CO2 Recycling Plant	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(721,910)
Water Injection Plant	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Trunkline Construction	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(4,146)
Total Capital Costs	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(1.067.389)
	Ŷ		Ŷ		Ψ		Ŷ		Ŷ		Ŷ		Ψ		Ŷ	(1,001,000)
CO2 Costs (\$M)																
Total CO2 Cost (\$M)	\$	(79,151)	\$	(49,314)	\$	(19,478)	\$	-	\$	-	\$	-	\$	-	\$	(9,454,691)
O&M Costs (\$M)																
Operating & Maintenance (\$M)	\$	(44,614)	\$	(44,614)	\$	(35,691)	\$	(26,768)	\$	(17,846)	\$	(8,923)	\$	-	\$	(1,472,256)
Lifting Costs (\$M)	\$	(49,848)	\$	(49,886)	\$	(42,028)	\$	(33,763)	\$	(22,759)	\$	(7,955)	\$	-	\$	(1,554,098)
G&A	•	(18,892)	•	(18,900)	•	(15.544)	•	(12,106)	•	(8,121)	•	(3.376)	•	-	\$	(605.271)
Total O&M Costs	\$	(113,354)	\$	(113,400)	\$	(93,263)	\$	(72,637)	\$	(48,726)	\$	(20,254)	\$	-	\$	(3,631,625)
Net Cash Flow (\$M)	\$	241.670	\$	222.761	\$	187.322	\$	141.640	\$	76.394	\$	20,204	\$	-	\$	14.483.443
Cum. Cash Flow	\$ 1	3.835.120	<u>\$</u> 1	4.057.881	\$	14.245.204	\$	14.386.844	\$ 1	4.463.238	\$ ´	4.483.443	##	#######	- 	,,
Discount Factor	Ŧ .	0.00	÷ .	0.00	Ŷ	0.00	Ŧ	0.00	Ŧ	0.00	Ŧ	0.00		0.00		
Disc. Net Cash Flow	\$	191	\$	141	\$	95	\$	57	\$	25	\$	5	\$	-	\$	473.357
Disc. Cum Cash Flow	ŝ	473 034	ŝ	473 175	ŝ	473 270	Ŝ	473 327	ŝ	473 352	ŝ	473 357	\$4	73 357	Ŧ	

Basin	Permian (West Texas 8A)
Field	WASSON (DENVER UNIT)
Formation	SAN ANDRES
Technology Case	MPZ (Individual)
Depth (ft)	5,380
Total OOIP (MMBIs)	2,372
Cumulative Recovery (MMbls)	1,042
EUR (MMbls)	1,099
Total ROIP (MMbls)	1,273
API Gravity	33.0
Patterns	696
Existing Injectors Used	696
Converted Producers Used	0
New Injectors Drilled	0
Existing Producers Used	750
New Producers Drilled	0

Pattern Detail

Cum Oil (Mbbl)	819		
Cum H2O (Mbw)	3,890	4.75 E	Bw/
Gross CO2 (MMcf)	9,431	11.52	Mcf
Purchased CO2 (MMcf)	3,511	4.29	Mcf
Recycled CO2 (MMcf)	5,920	7.23	Mcf.

Project Detail

Cum Oil (MMbbl)	569.68	
% OOIP Recovered	24.0%	
Cum H2O (MMbw)	2,707	
Gross CO2 (MMcf)	6,563,698	
Purchased CO2 (MMcf)	2,395,994	
Recycled CO2 (MMcf)	4,167,704	
Payback Period (per pattern)	4	years
Project Length	36	years

Project Economics		\$/BBI
Total Net Revenue (\$M)	\$ 15,330,960	
Total Capital Investment (\$M)	\$ (474,194)	\$ 0.83
Total CO2 Cost (\$M)	\$ (4,813,088)	\$ 8.45
Total O&M Costs (\$M)	\$ (2,719,074)	\$ 4.77
	\$ (8,006,356)	\$ 14.05

Field Cashflow Model					Pattern			Fie	ld					
State	Permian (West Texas	s 8A)	Г	Existir	ng Injector	rs Used	1.00	Existir	ng Injectors Used	69	6			
Field	WASSON (DENVER	UNIT))	Converted	Produce	rs Used	0.00	Converted	Producers Used	(D			
Formation	SAN ANDRES	,		New	Injectors I	Needed	0.00	New	Injectors Needed	(D			
Depth	5380)		New P	roducers I	Needed	0.00	New Pr	oducers Needed	(D			
Distance from Trunkline	1() mile	s	Existing	Producer	rs Used	1.08	Existing	Producers Used	75	5			
# of Patterns	696.00)	L	0				0						
Miscibility:	Miscible													
			0	1	2		3	4	5	6		7		8
CO2 Injection (MMcf)				47,453	_	94.907	142,360	189.813	237,266	237,266	T	237,266		237,266
H2O Injection (Mbw)				11,860		23,734	35,593	47,453	59,313	59,327		59,313		59,313
Oil Braduction (Mbbl)		1				04	E 059	16 / 91	24.021	21 692	<u> </u>	27 500	_	26,000
H2O Production (MBW)				-		04 50 427	0,908	 10,401	24,931	31,002	+	37,500		30,999
CO2 Production (MMcf)				30,240		00,427	04,522	2.645	15 024	35 083	+-	60,024		86 360
						_	72	2,040	10,924	55,505	<u> </u>	00,001		00,000
CO2 Purchased (MMcf)				47,453		94,907	142,318	187,168	221,342	201,283	<i>.</i>	177,216		150,907
CO2 Recycled (MMcf)				-		-	42	2,645	15,924	35,983	i	60,051		86,360
										*				
Oil Price (\$/Bbl)	\$ 35.00		9	35.00	\$	35.00 \$	35.00	\$ 35.00 \$	35.00	\$ 35.00	\$	35.00	\$	35.00
Gravity Adjustment	33		97	33.25	\$	33.25 \$	33.25	\$ 33.25 \$	33.25	\$ 33.25	, \$	33.25	\$	33.25
Gross Revenues (\$M)			\$	s -	\$	2,777 \$	198,096	\$ 548,003 \$	828,946	\$ 1,053,424	• \$	1,246,891	\$ 1	1,230,229
Royalty (\$M)	-12.5%		9	s -	\$	(347) \$	(24,762)	\$ (68,500) \$	(103,618)	\$ (131,678)\$	(155,861)	\$	(153,779)
Severance Taxes (\$M)	-5.0%		9	s -	\$	(121) \$	(8,667)	\$ (23,975) \$	(36,266)	\$ (46,087)\$	(54,551)	\$	(53,823)
Ad Valorum (\$M)	-2.5%		9	- 6	\$	(61) \$	(4,333)	\$ (11,988) \$	(18,133)	\$ (23,044)\$	(27,276)	\$	(26,911)
Net Revenue(\$M)			9	- 6	\$	2,248 \$	160,334	\$ 443,540 \$	670,929	\$ 852,615	\$	1,009,202	\$	995,716
Capital Costs (\$M)														
New Well - D&C		\$	- 4	- S	\$	- \$	-	\$ - \$	-	\$ -	\$	-	\$	-
Exisiting Well Deepening		\$	- 4	- 6	\$	- \$	-	\$ - \$	-	\$-	\$	-	\$	-
Reworks - Producers to Producers		\$	(11,737) \$	6 (11,737)	\$ (*	11,737) \$	(11,737)	\$ (11,737) \$	-	\$-	\$	-	\$	-
Reworks - Producers to Injectors		\$	- \$	s -	\$	- \$	-	\$ - \$	-	\$-	\$	-	\$	-
Reworks - Injectors to Injectors		\$	(9,312) \$	6 (9,312)	\$	(9,312) \$	(9,312)	\$ (9,312) \$	-	\$-	\$	-	\$	-
Surface Equipment (new wells only)		\$	- 4	- 6	\$	- \$	-	\$ - \$	-	\$-	\$	-	\$	-
CO2 Recycling Plant		\$	- 4	- 6	\$ (3)	64,799) \$	-	\$ - \$	-	\$-	\$	-	\$	-
Water Injection Plant		\$	- 4	- 6	\$	- \$	-	\$ - \$	-	\$-	\$	-	\$	-
Trunkline Construction		\$	(4,146) \$	- 6	\$	- \$	-	\$ - \$	-	\$ -	\$	-	\$	-
Total Capital Costs		\$	(25,196) \$	6 (21,050)	\$ (38	85,849) \$	(21,050)	\$ (21,050) \$	-	\$ -	\$	-	\$	-
CO2 Costs (\$M)														
Total CO2 Cost (\$M)			9	66,435)	\$ (1:	32,869) \$	(199,260)	\$ (262,961) \$	(315,452)	\$ (294,391) \$	(269,120)	\$	(241,495)
O&M Costs (\$M)										,	<u> </u>			<u> </u>
Operating & Maintenance (\$M)			\$	6 (8,768)	\$ (*	17,535) \$	(26,303)	\$ (35,070) \$	(43,838)	\$ (43,838)\$	(43,838)	\$	(43,838)
Lifting Costs (\$M)			9	6 (7,562)	\$ (*	15,128) \$	(22,620)	\$ (29,813) \$	(35,997)	\$ (33,982)\$	(31,581)	\$	(29,041)
G&A	20%	6		(3,266)		(6,533)	(9,785)	(12,977)	(15,967)	(15,564	.)	(15,084)		(14,576)
Total O&M Costs			9	6 (19,596)	\$ (:	39,195) \$	(58,707)	\$ (77,860) \$	(95,802)	\$ (93,384	.) \$	(90,503)	\$	(87,454)
Net Cash Flow (\$M)		\$	(25,196) \$	6 (107,080)	\$ (5	55,666) \$	(118,683)	\$ 81,668 \$	259,674	\$ 464,840	\$	649,580	\$	666,767
Cum. Cash Flow		\$	(25,196) \$	6 (132,276)	\$ (68	87,942) \$	(806,625)	\$ (724,957) \$	(465,283)	\$ (442) \$	649,138	\$ 1	1,315,905
Discount Factor	25%		1.00	0.80	. (-	0.64	0.51	0.41	0.33	0.26	, . ,	0.21		0.17
Disc. Net Cash Flow		\$	(25,196) \$	6 (85,664)	\$ (3	55,626) \$	(60,766)	\$ 33,451 \$	85,090	\$ 121,855	\$	136,227	\$	111,865
Disc. Cum Cash Flow		\$	(25,196) \$	6 (110,860)	\$ (40	66,486) \$	(527,252)	\$ (493,800) \$	(408,710)	\$ (286,855)\$	(150,628)	\$	(38,764)

		9		10		11		12		13	14	Ļ		15		16		17		18		19		20
CO2 Injection (MMcf)		237,280		237,280		237,280		232,756		227,926	22	3,082		218,252		213,421		213,129		213,129		213,129		213,129
H2O Injection (Mbw)		59,313		59,327		59,313		61,568		63,990	6	6,412		68,820		71,229		71,396		71,396		71,396		71,396
Oil Production (Mbbl)		31,487		27,311		24,597		22,884		21,465	2	0,170		19,404		18,722		17,790		16,941		16,231		15,604
H2O Production (MBw)		74,904		72,537		70,547		69,127		68,960	6	9,600		70,421		71,646		72,955		73,344		73,331		73,205
CO2 Production (MMcf)		112,223		129,623		142,026		151,672		157,310	16	0,525		161,862		161,945		161,152		162,432		164,395		166,400
CO2 Purchased (MMcf)		125,057		107,657		95,255		81,084		70,616	6	2,556		56,390		51,476		51,977		50,697		48,734		46,729
CO2 Recycled (MMcf)		112,223		129,623		142,026		151,672		157,310	16	0,525		161,862		161,945		161,152		162,432		164,395		166,400
·																								
Oil Price (\$/Bbl)	\$	35.00	\$	35.00	\$	35.00	\$	35.00 \$	\$	35.00 \$		35.00	\$	35.00	\$	35.00 \$;	35.00	\$	35.00 \$	\$	35.00	\$	35.00
Gravity Adjustment	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	33.25 \$		33.25	\$	33.25	\$	33.25 \$;	33.25	\$	33.25 \$	\$	33.25	\$	33.25
Gross Revenues (\$M)	\$	1,046,944	\$	908,092	\$	817,838	\$	760,909	\$	713,699 \$	67	0,655	\$	645,199	\$	622,520 \$;	591,510	\$	563,276 \$	\$	539,671	\$	518,844
Royalty (\$M)	\$	(130,868)	\$	(113,512) \$	\$	(102,230)	\$	(95,114) \$	\$	(89,212) \$	(8	3,832)	\$	(80,650)	\$	(77,815) \$;	(73,939)	\$	(70,410) \$	\$	(67,459)	\$	(64,855)
Severance Taxes (\$M)	\$	(45,804)	\$	(39,729) \$	\$	(35,780)	\$	(33,290)	\$	(31,224) \$	(2	9,341)	\$	(28,227)	\$	(27,235) \$;	(25,879)	\$	(24,643) \$	\$	(23,611)	\$	(22,699)
Ad Valorum (\$M)	\$	(22,902)	\$	(19,865) \$	\$	(17,890)	\$	(16,645)	\$	(15,612) \$	(1	4,671)	\$	(14,114)	\$	(13,618) \$;	(12,939)	\$	(12,322) \$	\$	(11,805)	\$	(11,350)
Net Revenue(\$M)	\$	847,370	\$	734,987	\$	661,938	\$	615,861	\$	577,650 \$	54	2,812	\$	522,208	\$	503,852 \$;	478,753	\$	455,902 \$	\$	436,797	\$	419,939
Capital Costs (\$M)																								
New Well - D&C	\$	-	\$	- 9	\$	-	\$	- 9	\$	- \$		-	\$	-	\$	- \$;	-	\$	- \$	\$	-	\$	-
Exisiting Well Deepening	\$	-	\$	- 9	\$	-	\$	- 9	\$	- \$		-	\$	-	\$	- \$;	-	\$	- \$	\$	-	\$	-
Reworks - Producers to Producers	\$	-	\$	- 9	\$	-	\$	- 9	\$	- \$		- 3	\$	-	\$	- \$;	-	\$	- 9	\$	-	\$	-
Reworks - Producers to Injectors	\$	-	\$	- 9	\$	-	\$	- 9	\$	- \$		-	\$	-	\$	- \$;	-	\$	- 9	\$	-	\$	-
Reworks - Injectors to Injectors	\$	-	\$	- 9	\$	-	\$	- 9	\$	- \$		-	\$	-	\$	- \$;	-	\$	- 9	\$	-	\$	-
Surface Equipment (new wells only)	\$	-	\$	- 9	\$	-	\$	- 9	\$	- \$		-	\$	-	\$	- \$;	-	\$	- 9	\$	-	\$	-
CO2 Recycling Plant	\$	-	\$	- 9	\$	-	\$	- 9	\$	- \$		-	\$	-	\$	- \$;	-	\$	- 4	\$	-	\$	-
Water Injection Plant	\$	-	\$	- 9	\$	-	\$	- 9	\$	- \$		-	\$	-	\$	- \$;	-	\$	- 4	\$	-	\$	-
Trunkline Construction	\$	-	\$	- 9	\$	-	\$	- 9	\$	- \$		-	\$	-	\$	- \$;	-	\$	- 9	\$	-	\$	-
Total Capital Costs	\$	-	\$	- 9	\$	-	\$	- 9	\$	- \$		-	\$	-	\$	- \$;	-	\$	- 9	\$	-	\$	-
CO2 Costs (\$M)																								
Total CO2 Cost (\$M)	\$	(214 358)	\$	(196.088)	\$	(183.065)	\$	(166 603)	\$	(153 921) \$	(1/	3 763)	\$	(135 598)	\$	(128 747) \$		129 171)	\$	(127 827) \$	\$ 1	(125 766)	\$	(123 661)
0&M Costs (\$M)	Ψ	(214,000)	Ψ	(100,000)	Ψ	(100,000)	Ψ	(100,000) (Ψ	(100,021) ψ	(1-	0,100)	Ψ	(100,000)	Ψ	(120,747) \$		125,171)	Ψ	(127,027) 4	γ	(120,700)	Ψ	(120,001)
Operating & Maintenance (\$M)	\$	(43,838)	\$	(43,838)	\$	(43,838)	\$	(43,838)	\$	(43,838) \$	(4	3,838)	\$	(43,838)	\$	(43,838) \$;	(43,838)	\$	(43,838) \$	\$	(43,838)	\$	(43,838)
Lifting Costs (\$M)	\$	(26,598)	\$	(24,962)	\$	(23,786)	\$	(23,003)	\$	(22,606) \$	(2	2,443)	\$	(22,456)	\$	(22,592) \$;	(22,686)	\$	(22,571) \$	\$	(22,390)	\$	(22,202)
G&A		(14,087)		(13,760)		(13,525)		(13,368)		(13,289)	(1	3,256)		(13,259)		(13,286)		(13,305)		(13,282)		(13,246)		(13,208)
Total O&M Costs	\$	(84,523)	\$	(82,560)	\$	(81,148)	\$	(80,209)	\$	(79,733) \$	(7	9,537)	\$	(79,553)	\$	(79,716) \$;	(79,829)	\$	(79,691) \$	\$	(79,474)	\$	(79,248)
Net Ceeh Flow (RM)	¢	E 40 400	¢	450.000	ŕ	207 724	¢	260.040	¢	242.000 0	24	0 5 4 0	ድ	207.057	¢	005 000 (260 752	¢	040.004	ħ	004 557	¢	017.000
	¢	1 964 204	¢	400,339	φ ¢ γ	397,724	¢ ⊅	309,049	₽ ₽ '	343,990 \$	2 75	9,512	<u>ф</u>	307,057	ф Ф	290,388 \$) · /	209,703	<u>\$</u>	240,304 3	₽ ₽	231,337	<u>ф</u>	217,030
Discoupt Easter	φ	0 12	Φ	2,320,733	φ 2	0.00	φ	3,007,000 3	φ	0.05	3,75	0.04	φ	4,000,072	φ	4,000,400 \$	4,	023,213	φ 4	4,071,097 3	р Э,	0.04	φ;	0.04
Discount Factor	¢	73 617	¢	18 000 9	¢	34 164	¢	25 361	¢	0.05 18.011 ¢	1	1 052	¢	10.04	¢	0.03 8.31/ ¢		6.074	¢	0.02	t	3 3 3 7	¢	2 502
Disc. Cum Cash Flow	φ Φ	3/ 852	φ Φ	40,333	Ψ Φ	118 017	φ Φ	1/3 379	Ψ ¢	162 280 ¢	17	4,002 6 3/1	φ ¢	187 1/5	φ ¢	ت 0,314 ¢ 105 / 50 ¢		201 534	φ Φ	206.008	τ 2	200 3/5	φ ¢	2,302
Disc. Outil Casil Flow	φ	54,005	φ	00,002 0	ψ	110,017	φ	140,070	ψ	102,203 Ø	17	0,341	φ	107,140	φ	190,409 Φ		201,004	ψ	200,000 J	Ψ	203,040	φ	∠11,047

Field Cashflow Model State

Disc. Net Cash Flow

Disc. Cum Cash Flow

\$

\$

1,898 \$

1,454 \$

1,103 \$

819 \$

State Field Formation Depth Distance from Trunkline # of Patterns Miccibility:

Miscibility:																								
		21		22		23		24		25		26		27		28	29	9		30		31		32
CO2 Injection (MMcf)		213,129		213,115		213,115		213,115		213,115		213,115		213,115		213,115	21	3,115		193,697		151,074		108,451
H2O Injection (Mbw)		71,396		71,396		71,396		71,396		71,396		71,396		71,396		71,396	7	1,396		81,098		102,423		123,735
Oil Production (Mbbl)		15,103		14,686		14,212		13,614		12,973		12,208		11,303		10,468		9,772		9,299		9,104		8,978
H2O Production (MBw)		72,969		72,607		72,245		71,966		71,660		71,535		71,577		71,632	7	1,660		72,746		79,720		93,779
CO2 Production (MMcf)		168,362		170,436		172,622		174,974		177,452		179,888		182,199		184,315	18	6,110		190,217		185,122		161,514
CO2 Purchased (MMcf)		44,767		42,679		40,493		38,141		35,663		33,227		30,916		28,800	2	7,005		3,480		-		-
CO2 Recycled (MMcf)		168,362		170,436		172,622		174,974		177,452		179,888		182,199		184,315	18	6,110		190,217		151,074		108,451
	\$	35.00	\$	35.00	\$	35.00	\$	35.00	\$	35.00 \$	\$	35.00	\$	35.00	\$	35.00 \$		35.00	\$	35.00	\$	35.00 \$	<u> </u>	35.00
Gravity Adjustment	¢	22.25	φ ¢	22.25	¢	33.25	Ψ ¢	22.00	Ψ Φ	22.25	r r	22.25	¢	33.25	Ψ Φ	22.25 ¢		22.25	¢	33.25	φ ¢	22.00 4		22.25
	φ ¢	502 4 94	φ ¢	499,000	φ ¢	472.500	ዋ ድ	450.650	φ r	424.267 (₽ r	405 014	φ ¢	33.23	ዋ ጉ	33.23 ¢	20	33.23	φ ¢	200 177	ዋ ድ	202.607 4		200 522
Gloss Revenues (\$W)	¢ ¢	502,181	¢	466,296	¢	472,560	φ Φ	452,058	⊅ r	431,307 3	₽ ' ►	405,911	¢ ¢	3/3,820 3	⊅ r	348,050 \$	32	4,914	¢ ¢	309,177 3	φ ¢	302,097 3	· ·	(27.246)
	¢	(62,773)	¢	(61,037)	¢	(59,070)	¢ ¢	(30,382)	₽ ↑	(53,921) \$	₽ ►	(50,739)	¢	(40,978)	₽	(43,507) \$	(4	0,614)	ф Ф	(38,647) 3	φ ¢	(37,837) 3		(37,316)
Severance Taxes (\$M)	\$ ¢	(21,970)	\$	(21,363)	\$	(20,674)	ቅ ድ	(19,804)	⊅ ↑	(18,872) \$	Þ	(17,759)	\$ ¢	(16,442) 3	⊅ ≁	(15,227) \$	(1	4,215)	\$	(13,526)	ቅ ሱ	(13,243) \$		(13,061)
Ad Valorum (\$IVI)	\$ •	(10,985)	\$	(10,681)	\$	(10,337)	Ф	(9,902) 3	Þ	(9,436) \$	Þ	(8,879)	\$	(8,221) 3	⊅ ⊅	(7,614) \$	00	(7,107)	\$	(6,763) 3	Ф	(6,622) \$		(6,530)
	\$	406,453	\$	395,215	\$	382,478	\$	366,370 3	Þ	349,138 \$	Þ	328,534	\$	304,184	Þ	281,708 \$	20	2,977	Ф	250,240 \$	þ	244,996 \$	<u> </u>	241,624
Capital Costs (\$M)	•		•		•		•		•		~		•		•	<u>^</u>			<u> </u>		•			
New Well - D&C	\$	-	\$	-	\$	-	\$	- 9	\$	- \$	þ Þ	-	\$	- 8	\$ •	- \$		-	\$	- 9	\$	- 4	,	-
Exisiting Well Deepening	\$	-	\$	-	\$	-	\$	- 9	\$	- 4	5	-	\$		\$	- \$		-	\$	- 9	\$	- 4	,	-
Reworks - Producers to Producers	\$	-	\$	-	\$	-	\$	- 9	\$	- 4	5	-	\$		5	- \$		-	\$	- 9	\$	- 4	,	-
Reworks - Producers to Injectors	\$	-	\$	-	\$	-	\$	- 9	\$	- 4	5	-	\$	-	5	- \$		-	\$	- 9	\$	- 4	,	-
Reworks - Injectors to Injectors	\$	-	\$	-	\$	-	\$	- 9	\$	- 4	5	-	\$	- 9	\$	- \$		-	\$	- 9	\$	- 4		-
Surface Equipment (new wells only)	\$	-	\$	-	\$	-	\$	- 9	\$	- \$	5	-	\$	- 9	\$	- \$		-	\$	- 9	\$	- 9	•	-
CO2 Recycling Plant	\$	-	\$	-	\$	-	\$	- 9	\$	- \$	₿	-	\$	- 9	\$	- \$		-	\$	- 9	\$	- 4	<i>i</i>	-
Water Injection Plant	\$	-	\$	-	\$	-	\$	- 9	\$	- \$	₿	-	\$	- 9	\$	- \$		-	\$	- 9	\$	- 4	<i>i</i>	-
Trunkline Construction	\$	-	\$	-	\$	-	\$	- 9	\$	- \$	\$	-	\$	- 9	\$	- \$		-	\$	- 9	\$	- 4	j –	-
Total Capital Costs	\$	-	\$	-	\$	-	\$	- 9	\$	- \$	\$	-	\$	- 9	\$	- \$		-	\$	- 9	\$	- 9	<i>i</i>	-
CO2 Costs (\$M)																								
Total CO2 Cost (\$M)	\$	(121,600)	\$	(119,403)	\$	(117,108)	\$	(114,638)	\$	(112,037) \$	5 (109,479)	\$	(107,052)	\$	(104,831) \$	(10	2,945)	\$	(71,448)	\$	(52,876) \$;	(37,958)
O&M Costs (\$M)			·							. , , .	,													<u> </u>
Operating & Maintenance (\$M)	\$	(43,838)	\$	(43,838)	\$	(43,838)	\$	(43,838)	\$	(43,838) \$	\$	(43,838)	\$	(43,838)	\$	(43,838) \$	(4	3,838)	\$	(43,838)	\$	(43,838) \$;	(43,838)
Lifting Costs (\$M)	\$	(22.018)	\$	(21.823)	\$	(21.614)	\$	(21,395)	\$	(21.158) \$	5	(20.936)	\$	(20,720)	\$	(20.525) \$	(2	0.358)	\$	(20,511)	\$	(22.206) \$	5	(25.689)
G&A	•	(13,171)	•	(13,132)	•	(13.090)	•	(13.047)	•	(12,999)		(12.955)	•	(12,912)	•	(12.873)	(1	2,839)		(12.870)	•	(13,209)		(13,905)
Total O&M Costs	\$	(79,027)	\$	(78,793)	\$	(78,543)	\$	(78,280) \$	\$	(77,996) \$	\$	(77,728)	\$	(77,469) \$	\$	(77,236) \$	(7	7,035)	\$	(77,219) \$	\$	(79,253) \$;	(83,433)
Net Cash Flow (\$M)	\$	205,826	\$	197,019	\$	186,827	\$	173,452	\$	159,105 \$	\$	141,327	\$	119,662	\$	99,641 \$	8	2,997	\$	101,574	\$	112,867 \$;	120,234
Cum. Cash Flow	\$	5,526,009	\$	5,723,028	\$	5,909,855	\$	6,083,307	\$	6,242,412 \$	\$6.	383,739	\$	6,503,402	\$6	,603,043 \$	6,68	6,040	\$	6,787,613	\$6	,900,480 \$	j 7.	,020,714
Discount Factor		0.01		0.01		0.01		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00

601 \$

427 \$

213,746 \$ 215,199 \$ 216,302 \$ 217,121 \$ 217,723 \$ 218,150 \$ 218,439 \$ 218,632 \$ 218,760 \$ 218,886 \$ 218,998 \$ 219,093

289 \$

193 \$

128 \$

126 \$

112 \$

95

Field Cashflow Model State Field Formation Depth Distance from Trunkline

of Patterns Miscibility:

wiscibility.														
		33		34		35		36		37		38	То	tals
CO2 Injection (MMcf)		65,828		23,205		-		-		-		1		6,563,698
H2O Injection (Mbw)		123,791		109,509		85,524		49,931		14,338		-		2,484,372
Oil Production (Mbbl)		7,893		6,180		4,413		2,520		710		-		569,676
H2O Production (MBw)		91,594		77,228		61,833		40,549		12,166		-		2,707,301
CO2 Production (MMcf)		127,646		89,854		49,249		17,400		3,703		-		4,453,634
CO2 Purchased (MMcf)		-		-		-		-		-		-		2,395,994
CO2 Recycled (MMcf)		65,828		23,205		-		-		-		-		4,167,704
Oil Price (\$/Bbl)	\$	35.00	\$	35.00	\$	35.00	\$	35.00	\$	35.00	\$	-		
Gravity Adjustment	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	-		
Gross Revenues (\$M)	\$	262,430	\$	205,501	\$	146,720	\$	83,774	\$	23,605	\$	-	\$	18,941,727
Royalty (\$M)	\$	(32,804)	\$	(25,688)	\$	(18,340)	\$	(10,472)	\$	(2,951)	\$	-	\$	(2,367,716)
Severance Taxes (\$M)	\$	(11,481)	\$	(8,991)	\$	(6,419)	\$	(3,665)	\$	(1,033)	\$	-	\$	(828,701)
Ad Valorum (\$M)	\$	(5,741)	\$	(4,495)	\$	(3,210)	\$	(1,833)	\$	(516)	\$	-	\$	(414,350)
Net Revenue(\$M)	\$	212,405	\$	166,327	\$	118,752	\$	67,805	\$	19,105	\$	-	\$	15,330,960
Capital Costs (\$M)														
New Well - D&C	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Exisiting Well Deepening	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Reworks - Producers to Producers	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(58,687)
Reworks - Producers to Injectors	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Reworks - Injectors to Injectors	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(46,562)
Surface Equipment (new wells only)	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
CO2 Recycling Plant	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(364,799)
Water Injection Plant	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Trunkline Construction	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(4,146)
Total Capital Costs	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(474,194)
00000														
	¢	(00.040)	¢	(0.400)	¢		¢		¢		¢		¢	(4.040.000)
	\$	(23,040)	\$	(8,122)	\$	-	\$	-	\$	-	\$	-	\$	(4,813,088)
Operating & Maintenance (\$M)	\$	(43,838)	\$	(35.070)	\$	(26.303)	\$	(17.535)	\$	(8,768)	\$	-	\$	(1.446.651)
Lifting Costs (\$M)	¢	(24 972)	¢	(20,952)	¢	(16 561)	¢	(10.767)	¢	(2,210)	¢		¢	(010 014)
	φ	(24,072)	φ	(20,052)	φ	(10,301)	φ	(10,707)	φ	(3,219)	φ	-	ф Ф	(019,244)
GaA Total OSM Coata	¢	(13,742)	¢	(11,104)	¢	(0,373)	¢	(3,000)	¢	(2,397)	¢	-	ф Ф	(433,179)
Total Oxim Costs	Ф	(82,451)	¢	(67,107)	¢	(51,437)	¢	(33,963)	¢	(14,384)	Ф	-	Ф	(2,719,074)
Net Cash Flow (\$M)	\$	106,913	\$	91,099	\$	67,315	\$	33,842	\$	4,721	\$	-	\$	7,324,604
Cum. Cash Flow	\$	7,127,628	\$	1,218,726	\$	7,286,041	\$	7,319,883	\$	7,324,604	##	*#######		
Discount Factor	•	0.00	•	0.00	•	0.00	•	0.00	•	0.00	•	0.00	•	
Disc. Net Cash Flow	\$	68	\$	46	\$	27	\$	11	\$	1	\$	-	\$	219,246
Disc. Cum Cash Flow	\$	219,161	\$	219,207	\$	219,234	\$	219,245	\$	219,246	\$2	19,246		

Basin	Permian (West Texas 8A)	
Field	WASSON (DENVER UNIT)	
Formation	SAN ANDRES	
Technology Case	TZ / ROZ (Individual)	
Depth (ft)	5,380	
Total OOIP (MMBIs)	3,018	Ī
Cumulative Recovery (MMbls) *	1,484	Ī
EUR (MMbls) *	1,484	Ĩ
Total ROIP (MMbls)	1,534	Ĩ
API Gravity	33.0	Ĩ
Patterns	696	Ĩ
Existing Injectors Used	696	Ĩ
Converted Producers Used	0	Ĩ
New Injectors Drilled	0	Ĩ
Existing Producers Used	750	Ĩ
New Producers Drilled	0	Ĩ
Pattern Detail	405	Т
	485	0.51 0.00
	4,127	8.51 Bw/Bbi
Gross CO2 (Millici)	9,432	
Purchased CO2 (MMcf)	4,435	9.15 WCI/BDI
Recycled CO2 (MINICI)	4,997	
Project Detail		
Cum Oil (MMbbl)	337.49	
% OOIP Recovered	11.2%	
Cum H2O (MMbw)	2,873	
Gross CO2 (MMcf)	6,564,324	
Purchased CO2 (MMcf)	3,011,078	
Recycled CO2 (MMcf)	3,553,246	
Payback Period (per pattern)	17	years
Project Length	35	years
Project Economics		\$/BBI
Total Net Revenue (\$M)	\$ 9,082,447	Ī
Total Capital Investment (\$M)	\$ (651,072)	\$ 1.93
Total CO2 Cost (\$M)	\$ (5,459,145)	\$ 16.18
Total O&M Costs (\$M)	\$ (2,729,755)	\$ 8.09
	\$ (8,839,972)	\$ 26.19

*Includes "Mother Nature's" waterflood oil displacement of 1,484 million barrels

Field Cashflow Model			P	Pattern		F	ield				
State	Permian (West Texas 8A	()	Existing	g Injectors Used	1.00	Exis	sting Injectors Used	696			
Field	WASSON (DENVER UN	IT)	Converted F	Producers Used	0.00	Convert	ed Producers Used	0			
Formation	SAN ANDRES		New In	jectors Needed	0.00	Ne	w Injectors Needed	0			
Depth	5380	Γ	New Pro	ducers Needed	0.00	New	Producers Needed	0			
Distance from Trunkline	10 m	iles	Existing F	Producers Used	1.08	Existi	ng Producers Used	750			
# of Patterns	696.00										
Miscibility:	Miscible										
-		0	1	2	3	4	5	6	7	8	9
CO2 Injection (MMcf)			47,453	94,907	142,360	189,813	237,266	237,266	237,266	237,266	237,280
H2O Injection (Mbw)			11,860	23,734	35,593	47,453	59,313	59,327	59,313	59,313	59,313
Oil Production (Mbbl)			-	-	1 656	7 893	12 918	16 843	20 421	22 244	19 307
H2O Production (MBw)			30 123	60 246	88 211	109 369	128 175	115 717	102 145	90.076	84 188
CO2 Production (MMcf)			-	-	-	1.881	12.424	28.633	48.334	69.750	91,154
			47 450	04.007	142.200	107.000	004.040	208 622	100.000	167 547	140 407
CO2 Purchased (MMcf)			41,403	94,907	142,300	1 994	12 424	208,033	100,933	60 750	01 154
			-	-	-	1,001	12,424	20,033	40,004	09,700	91,104
Oil Price (\$/Bbl)	\$ 35.00	¢	35.00	\$ 35.00	\$ 35.00 ¢	35.00	\$ <u>3500</u> ¢	35.00	35.00 \$	35.00	\$ 35.00
Gravity Adjustment		Ψ Φ	22.00	¢ 33.00 €	¢ 33.00 φ	22.00	¢ 33.00 Φ	22.25	, 33.00 ¢	22.00	¢ 33.00
Gross Poyonuos (CM)		4 C	00.20	ψ JJ.2016 ¢ (₽ 55.20 ₽ \$ 55.079 €	262 420	ψ 33.20 Φ ¢ 420.546 ¢	560.026	, 55.25 ¢	720.619	ψ 33.20 ¢ 6/1.0E0
Giuss Revenues (AIVI)	10 50/	3 ¢	- 3	φ - 3 ¢	⊅ ⊃⊃,∪/୪ \$ * (coor\^	202,430	ଡ଼ 4∠୨,୦୦୦ ⊅ ¢ (⊑୨,୦୦୦) ¢) 0/0,900 \$ (0/072) @	(02,452)	₽ 041,909 € (90.245)
	-12.3%	4		ф - ; т	ቅ (0,000) ቅ (0,440) ሮ	(32,804)	ቅ (53,089) ቅ © (49,704) ©	(70,005) 3	5 (84,873) 5 (20,700) ¢	(92,452)	\$ (80,245) \$ (20,020)
	-3.0%	4		ф - ; т	ቅ (2,410) ቅ ፪ (4,205) €	(11,481)	ቅ (18,791) ቅ ሮ (0,200) ሮ	(24,502) 3	5 (29,706) 5 (11,052) 6	(32,358)	
Ad Valorum (\$N)	-2.5%	3	- 3	ф - 3 т	\$ (1,205) \$	(5,741)	\$ (9,396) \$ \$	(12,251) 3	5 (14,853) \$	(16,179)	\$ (14,043)
Net Revenue(\$M)		3	- :	Þ - 3	\$ 44,579 \$	212,405	\$ 347,639 \$	453,279	549,555 \$	598,629	\$ 519,586
	a	· •		r (÷ ۴		¢ ¢		· •		¢
New Well - D&C	4) - J		⊅ - ; € (40.044) (φ - φ τ (40.044) τ	-	ቅ - ቅ ዮ ዮ	- 3	•	-	ф -
Exisiting Well Deepening	1	5 (40,814) ‡ 5 (12,042) ¢	(40,814) 3	⊅ (40,814) 3 € (12,042) 9	ቅ (40,814) ቅ ድ (12,042) ድ	(40,814)	с - Ф с с	- 3) - D	-	ው - ድ
Reworks - Froducers to Froducers	4	5 (12,043) ‡	(12,043) 3	¢ (12,043) 3	ቃ (12,043)	(12,043)	φ - φ ¢ ¢	- 3	o - p	-	¢ -
Reworks - Floducers to Injectors	4	, - , , (0,410) (0	(0.410) 9	φ ¢ (0,410) 9	φ - φ ¢ (0,410) ¢	- (0.410)	¢ ¢		- 4 - 4	-	¢ -
Surface Equipment (now wells only)	ب م	5 (9,410) ¢	(9,410)	¢ (9,410) (ע (פ,410) ב ב	(9,410)	¢ ¢		- 4 - 4	-	¢ -
CO2 Recycling Plant) 4	- 4 - 4		¢	φ - φ \$ (200.720) \$	-	¢ ¢		- 4 - 4	-	¢ -
Water Injection Plant	4	, - J		φ = . ¢	⊭ (JU9,1J9)⊅ \$€	-	φ - Φ ¢ _ ¢		, - J	-	φ = ¢ _
Trunkline Construction	4	, - J		φ = . ¢	εΦ	-	φ - φ ¢ _ ¢	- 0	, - J	-	φ = ¢ _
	4	, - J (68.267) @	(68.267) 0	ψ - 3 \$ (68.267\0	୬ - ⊅ \$ (378.006\ ¢	(68 267)	φ - Φ φ - Φ	- 3	, - Þ	-	φ - ¢ _
Total Capital Costs	4	5 (00,207) ¢	(00,207)	\$ (00,207)	φ (378,000) φ	(00,207)	φ - φ		- φ		φ -
CO2 Costs (\$M)											
Total CO2 Cost (\$M)		.9	(66.435)	\$ (132.869) \$	\$ (199.304) \$	(263.763)	\$ (319.128) \$	(302.108)	6 (281,423) \$	(258,936)	\$ (236.481)
O&M Costs (\$M)		¥	(22, 20)	. (,	· · · · · · · · · · · · · · · · · · ·	(,)	. (2.2, 20) V	(000-,000)	,,. <u>.</u> , •	,,	
Operating & Maintenance (\$M)		\$	(8,923)	\$ (17,846) \$	\$ (26,768) \$	(35,691)	\$ (44,614) \$	(44,614) \$	6 (44,614) \$	(44,614)	\$ (44,614)
Lifting Costs (\$M)		Ċ	(7 524)	¢ (15.064) 0	t (22.467) ¢	(20.216)	¢ (25.272)¢	(22.140)	(20.641) ¢		¢ (25.974)
	200/	4	(1,001)	φ (ID,UOI) 3 /C E04)	₽ (∠∠,407) \$ (0.947)	(23,310)	φ (30,∠13) \$ (15.077)	(33,14U) 3 (1E EE1)	(30,041) \$ (15,054)	(∠0,U8U) (14 520)	φ (20,074)
Jan Total ORM Costs	20%	đ	(3,291)	(10C,0) (10C,0)	(3,047) \$ (50,000) *	(13,001)	(۱۵,۶//) ۲ (۱۵,۶//)	(10,001)	(10,001) (00,006) @	(14,039)	(14,098) ¢ (0/ E0/
		3	(19,744) 3	৯ (ຉ (ວອ,∪ຽ2) ຈັ	(78,008)	φ (30,005) \$	(93,305) 3	\$ (30,306)	(87,233)	φ (84,585)
Net Cash Flow (\$M)	9	68,267) \$	(154,445)	\$ (240,624)	\$ (591,813) \$	(197,633)	\$ (67,354) \$	57,867	5 177,826 \$	252,460	\$ 198,519
Cum. Cash Flow	\$	68,267) \$	(222,712)	\$ (463,336) \$	\$ (1,055,149) \$	(1,252,782)	\$ (1,320,135) \$	(1,262,268)	######## \$	(831,982)	\$ (633,463)
Discount Factor	25%	1.00	0.80	0.64	0.51	0.41	0.33	0.26	0.21	0.17	0.13
Disc. Net Cash Flow	9	68,267) \$	(123,556) \$	\$ (153,999) \$	\$ (303,008) \$	(80,950)	\$ (22,070) \$	15,169 \$	37,293 \$	42,356	\$ 26,645
Disc. Cum Cash Flow	\$	68,267) \$	(191,823)	\$ (345,822) \$	\$ (648,830) \$	(729,781)	\$ (751,851) \$	(736,682)	699,389) \$	(657,033)	\$ (630,388)

Miscibility:

		10	11		12		13		14	15	16		17		18	19	2	0	21
CO2 Injection (MMcf)		237,280	237,280		232,770		227,940		223,096	218,266	213,435		213,115		213,115	213,115	21	3,115	213,115
H2O Injection (Mbw)		59,327	59,313		61,568		63,990		66,412	68,820	71,229		71,396		71,396	71,396	1	1,382	71,396
Oil Production (Mbbl)		16,885	15,396		13,934		12,431		11,456	11,206	11,066		11,233		11,359	10,927		0,482	9,939
H2O Production (MBw)		80,708	77,841		76,421		76,449		76,769	76,769	77,242		77,298		76,657	76,435	7	6,254	76,115
CO2 Production (MMcf)		105,825	116,474		124,946		130,460		133,796	135,713	136,293		135,772		136,837	138,576	14	0,257	142,138
CO2 Purchased (MMcf)		131,455	120.806		107.824		97,480		89,300	82,553	77,143		77.343		76.278	74,539	-	2.859	70.977
CO2 Recycled (MMcf)		105,825	 116,474		124,946		130,460		133,796	135,713	 136,293		135,772		136,837	138,576	14	0,257	142,138
		,	,		, ,		,			,			, ,		,	,			,
Oil Price (\$/Bbl)	\$	35.00	\$ 35.00	\$	35.00	\$	35.00	\$	35.00	\$ 35.00	\$ 35.00	\$	35.00	\$	35.00	\$ 35.00 \$		35.00	\$ 35.00
Gravity Adjustment	\$	33.25	\$ 33.25	\$	33.25	\$	33.25	\$	33.25	\$ 33.25	\$ 33.25	\$	33.25	\$	33.25	\$ 33.25 \$		33.25	\$ 33.25
Gross Revenues (\$M)	\$	561,425	\$ 511,901	\$	463,303	\$	413,316	\$	380,917	\$ 372,586	\$ 367,958	\$	373,512	\$	377,677	\$ 363,329 \$	34	8,519	\$ 330,468
Royalty (\$M)	\$	(70,178)	\$ (63,988)	\$	(57,913)	\$	(51,665)	\$	(47,615)	\$ (46,573)	\$ (45,995)	\$	(46,689)	\$	(47,210)	\$ (45,416) \$	(4	3,565)	\$ (41,308)
Severance Taxes (\$M)	\$	(24,562)	\$ (22,396)	\$	(20,269)	\$	(18,083)	\$	(16,665)	\$ (16,301)	\$ (16,098)	\$	(16,341)	\$	(16,523)	\$ (15,896) \$	(5,248)	\$ (14,458)
Ad Valorum (\$M)	\$	(12,281)	\$ (11,198)	\$	(10,135)	\$	(9,041)	\$	(8,333)	\$ (8,150)	\$ (8,049)	\$	(8,171)	\$	(8,262)	\$ (7,948) \$		(7,624)	\$ (7,229)
Net Revenue(\$M)	\$	454,403	\$ 414,320	5	374,986	\$	334,528	\$	308,305	\$ 301,562	\$ 297,816	\$	302,311	\$	305,683	\$ 294,070 \$	28	32,082	\$ 267,472
Capital Costs (\$M)			,		,		,		,	,			,		,			,	,
New Well - D&C	\$	-	\$ - 9	\$	-	\$	-	\$	-	\$ -	\$ -	\$	-	\$	-	\$ - \$		-	\$ -
Exisiting Well Deepening	\$	-	\$ - 5	\$	-	\$	-	\$	-	\$ -	\$ -	\$	-	\$	-	\$ - \$		-	\$ -
Reworks - Producers to Producers	\$	-	\$ - 5	\$	-	\$	-	\$	-	\$ -	\$ -	\$	-	\$	-	\$ - \$		-	\$ -
Reworks - Producers to Injectors	\$	-	\$ - 3	\$	-	\$	-	\$	-	\$ -	\$ -	\$	-	\$	-	\$ - \$		-	\$ -
Reworks - Injectors to Injectors	\$	-	\$ - 5	\$	-	\$	-	\$	-	\$ -	\$ -	\$	-	\$	-	\$ - \$		-	\$ -
Surface Equipment (new wells only)	\$	-	\$ - 5	\$	-	\$	-	\$	-	\$ -	\$ -	\$	-	\$	-	\$ - \$		-	\$ -
CO2 Recycling Plant	\$	-	\$ - 5	\$	-	\$	-	\$	-	\$ -	\$ -	\$	-	\$	-	\$ - \$		-	\$ -
Water Injection Plant	\$	-	\$ - 5	\$	-	\$	-	\$	-	\$ -	\$ -	\$	-	\$	-	\$ - \$		-	\$ -
Trunkline Construction	\$	-	\$ - 5	\$	-	\$	-	\$	-	\$ -	\$ -	\$	-	\$	-	\$ - \$		-	\$ -
Total Capital Costs	\$	-	\$ - 8	\$	-	\$	-	\$	-	\$ -	\$ -	\$	-	\$	-	\$ - \$		-	\$ -
CO2 Costs (\$M)																			
Total CO2 Cost (\$M)	\$	(221,076)	\$ (209,895)	\$ ((194,685)	\$	(182,133)	\$	(171,848)	\$ (163,073)	\$ (155,702)	\$	(155,800)	\$	(154,682)	\$ (152,856) \$	(15	51,092)	\$ (149,117)
O&M Costs (\$M)																			
Operating & Maintenance (\$M)	\$	(44,614)	\$ (44,614)	\$	(44,614)	\$	(44,614)	\$	(44,614)	\$ (44,614)	\$ (44,614)	\$	(44,614)	\$	(44,614)	\$ (44,614) \$	(4	4,614)	\$ (44,614)
Lifting Costs (\$M)	\$	(24,398)	\$ (23,309)	\$	(22,589)	\$	(22,220)	\$	(22,056)	\$ (21,994)	\$ (22,077)	\$	(22,133)	\$	(22,004)	\$ (21,840) \$	(2	21,684)	\$ (21,513)
G&A		(13,802)	(13,585)		(13,440)		(13,367)		(13,334)	(13,321)	(13,338)		(13,349)		(13,324)	(13,291)	(*	3,260)	(13,225)
Total O&M Costs	\$	(82,815)	\$ (81,507)	\$	(80,643)	\$	(80,200)	\$	(80,004)	\$ (79,929)	\$ (80,029)	\$	(80,096)	\$	(79,941)	\$ (79,745) \$	(7	79,557)	\$ (79,353)
Net Cash Flow (\$M)	\$	150,513	\$ 122,918	\$	99,658	\$	72,194	\$	56,453	\$ 58,560	\$ 62,085	\$	66,415	\$	71,059	\$ 61,469 \$	ŧ	51,433	\$ 39,003
Cum. Cash Flow	\$	(482,950)	\$ (360,032)	5 ((260,374)	\$	(188,180)	\$	(131,728)	\$ (73,168)	\$ (11,083)	\$	55,332	\$	126,391	\$ 187,859 \$	23	9,292	\$ 278,295
Discount Factor	•	0.11	0.09		0.07	·	0.05	·	0.04	0.04	0.03	·	0.02	Č.	0.02	0.01		0.01	0.01
Disc. Net Cash Flow	\$	16,161	\$ 10,559	\$	6,848	\$	3,969	\$	2,483	\$ 2,060	\$ 1,748	\$	1,496	\$	1,280	\$ 886 \$		593	\$ 360
Disc. Cum Cash Flow	\$	(614,227)	\$ (603,669)	\$ ((596,820)	\$	(592,851)	\$	(590,368)	\$ (588,308)	\$ (586,561)	\$	(585,065)	\$	(583,785)	\$ (582,899) \$	(58	32,306)	\$ (581,946)

		22	23		24	25	26	27	28	29	30	31	32	33
CO2 Injection (MMcf)		213,115	213,115	()	213,115	213,115	213,115	213,115	213,115	213,115	193,822	151,199	108,576	65,953
H2O Injection (Mbw)		71,396	71,396		71,396	71,396	71,396	71,396	71,396	71,382	81,042	102,354	123,665	123,136
Oil Production (Mbbl)		9,215	8,533		7,920	7,141	6,515	6,208	5,972	5,832	5,860	6,027	6,027	5,304
H2O Production (MBw)		76,115	75,975		75,711	75,725	75,586	75,112	74,667	74,277	74,862	81,669	95,463	92,498
CO2 Production (MMcf)		144,220	146,456		148,787	151,047	153,118	155,058	156,703	158,028	161,507	156,880	137,216	108,452
CO2 Purchased (MMcf)		68,895	66,659		64,328	62,068	59,997	58,057	56,412	55,087	32,315	-	-	-
CO2 Recycled (MMcf)		144,220	146,456		148,787	151,047	153,118	155,058	156,703	158,028	161,507	151,199	108,576	65,953
Oil Price (\$/Bbl)	\$	35.00 \$	35.00	\$	35.00 \$	35.00 \$	35.00 \$	35.00 \$	35.00 \$	35.00 \$	35.00 \$	35.00 \$	35.00 \$	35.00
Gravity Adjustment	\$	33.25 \$	33.25	\$	33.25 \$	33.25 \$	33.25 \$	33.25 \$	33.25 \$	33.25 \$	33.25 \$	33.25 \$	33.25 \$	33.25
Gross Revenues (\$M)	\$	306,400 \$	283,721	\$	263,356 \$	237,437 \$	216,609 \$	206,427 \$	198,558 \$	193,930 \$	194,856 \$	200,410 \$	200,410 \$	176,342
Royalty (\$M)	\$	(38,300) \$	(35,465)\$	(32,919) \$	(29,680) \$	(27,076) \$	(25,803) \$	(24,820) \$	(24,241) \$	(24,357) \$	(25,051) \$	(25,051) \$	(22,043)
Severance Taxes (\$M)	\$	(13,405) \$	(12,413)\$	(11,522) \$	(10,388) \$	(9,477) \$	(9,031) \$	(8,687) \$	(8,484) \$	(8,525) \$	(8,768) \$	(8,768) \$	(7,715)
Ad Valorum (\$M)	\$	(6,703) \$	(6,206)\$	(5,761) \$	(5,194) \$	(4,738) \$	(4,516) \$	(4,343) \$	(4,242) \$	(4,262) \$	(4,384) \$	(4,384) \$	(3,857)
Net Revenue(\$M)	\$	247,993 \$	229,637	\$	213,154 \$	192,176 \$	175,318 \$	167,077 \$	160,708 \$	156,962 \$	157,711 \$	162,207 \$	162,207 \$	142,727
Capital Costs (\$M)														
New Well - D&C	\$	- \$	-	\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Exisiting Well Deepening	\$	- \$	-	\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Reworks - Producers to Producers	\$	- \$	-	\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Reworks - Producers to Injectors	\$	- \$	-	\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Reworks - Injectors to Injectors	\$	- \$	-	\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Surface Equipment (new wells only)	\$	- \$	-	\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
CO2 Recycling Plant	\$	- \$	-	\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Water Injection Plant	\$	- \$	-	\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Trunkline Construction	\$	- \$	-	\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Total Capital Costs	\$	- \$	-	\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
CO2 Costs (\$M)	<u> </u>	((()))))			((() ())))	(100 - 00) 0	((((0====0)	(100.000) 0	(100,100) •	((0) = 00) 0	(=======)	(22.222)	(00.00.0)
Office Cost (\$M)	\$	(146,930) \$	(144,582)\$	(142,135) \$	(139,762) \$	(137,587) \$	(135,550) \$	(133,823) \$	(132,432) \$	(101,769) \$	(52,920) \$	(38,002) \$	(23,084)
Operating & Maintenance (\$M)	\$	(44.614) \$	(44.614) \$	(44.614) \$	(44.614) \$	(44,614) \$	(44,614) \$	(44,614) \$	(44.614) \$	(44,614) \$	(44,614) \$	(44,614) \$	(44,614)
	Ψ Φ	(11,011) \$	(04.407) ¢	(1,01) ¢	(11,011) ¢	(11,011) \$	(11,011) \$	(11,011) \$	(11,011) \$	(1.1,01.1) ¢	(11,011) \$	(11,011) ¢	(11,011)
Lifting Costs (\$M)	\$	(21,332) \$	(21,127) \$	(20,908) \$	(20,716) \$	(20,525) \$	(20,330) \$	(20,160) \$	(20,027) \$	(20,181) \$	(21,924) \$	(25,373) \$	(24,450)
G&A	•	(13,189)	(13,148)	(13,104)	(13,066)	(13,028)	(12,989)	(12,955)	(12,928)	(12,959)	(13,308)	(13,997)	(13,813)
Total O&M Costs	\$	(79,135) \$	(78,889)\$	(78,626) \$	(78,396) \$	(78,167) \$	(77,933) \$	(77,728) \$	(77,569) \$	(77,753) \$	(79,845) \$	(83,984) \$	(82,877)
Net Cash Flow (\$M)	\$	21,927 \$	6,166	\$	(7,607) \$	(25,982) \$	(40,436) \$	(46,406) \$	(50,843) \$	(53,039) \$	(21,811) \$	29,442 \$	40,221 \$	36,766
Cum. Cash Flow	\$	300,222 \$	306,388	\$	298,781 \$	272,799 \$	232,363 \$	185,956 \$	135,113 \$	82,074 \$	60,264 \$	89,705 \$	129,926 \$	166,693
Discount Factor		0.01	0.01		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Disc. Net Cash Flow	\$	162 \$	36	\$	(36) \$	(98) \$	(122) \$	(112) \$	(98) \$	(82) \$	(27) \$	29 \$	32 \$	23
Disc. Cum Cash Flow	\$	(581 785) \$	(581 748) \$	(581 784) \$	(581 882) \$	(582 004) \$	(582 117) \$	(582 215) \$	(582 297) \$	(582 324) \$	(582 295) \$	(582 263) \$	(582 240)

		34		35		36		37		38	Το	tals
CO2 Injection (MMcf)		23.330		-		-		-		-		6.564.324
H2O Injection (Mbw)		108,868		84,940		49,346		13,753		-		2,481,101
Oil Production (Mbbl)		4 162		3.007		1 712		459		-		337 490
H2O Production (MBw)		77 785		62 041		40 243		11 735		-		2 872 670
CO2 Production (MMcf)		76 435		41 885		15 121		3 112		-		3 743 290
		,		,				-1				0,014,070
CO2 Purchased (MMcf)		-		-		-		-		-		3,011,078
		23,330				-				-		3,553,240
Oil Price (\$/Bbl)	\$	35.00	\$	35.00	\$	35.00	\$	35.00	\$	-		
Gravity Adjustment	\$	33 25	\$	33 25	\$	33 25	\$	33 25	\$	-		
Gross Revenues (\$M)	¢ ¢	138 389	¢ ¢	99 973	¢ ¢	56 929	¢ ¢	15 274	¢ ¢	-	\$	11 221 556
Royalty (\$M)	\$	(17 299)	\$	(12 497)	\$	(7 116)	\$	(1 909)	\$	-	\$	(1 402 694)
Severance Taxes (\$M)	\$	(6 055)	\$	(4 374)	\$	(2 491)	\$	(668)	\$	-	\$	(490 943)
Ad Valorum (\$M)	\$	(3,027)	ŝ	(2 187)	\$	(1 245)	ŝ	(334)	ŝ	-	\$	(245 472)
Net Revenue(\$M)	\$	112.009	\$	80.916	\$	46.077	\$	12.362	\$	-	\$	9.082.447
Capital Costs (\$M)	Ŧ	,	Ŧ	,	Ŧ		Ŧ	,	Ŧ		Ŧ	.,
New Well - D&C	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Exisiting Well Deepening	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(234,069)
Reworks - Producers to Producers	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(60,214)
Reworks - Producers to Injectors	\$	-	\$	-	\$	-	\$	-	\$	-	\$	
Reworks - Injectors to Injectors	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(47,050)
Surface Equipment (new wells only)	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
CO2 Recycling Plant	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(309,739)
Water Injection Plant	\$	-	\$	-	\$	-	\$	-	\$	-	\$	
Trunkline Construction	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Total Capital Costs	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(651,072)
CO2 Costs (\$M)												
Total CO2 Cost (\$M)	\$	(8,165)	\$	-	\$	-	\$	-	\$	-	\$	(5,459,145)
O&M Costs (\$M)												
Operating & Maintenance (\$M)	\$	(35,691)	\$	(26,768)	\$	(17,846)	\$	(8,923)	\$	-	\$	(1,472,256)
Lifting Costs (\$M)	\$	(20,487)	\$	(16,262)	\$	(10,489)	\$	(3,048)	\$	-	\$	(802,540)
G&A		(11,236)		(8,606)		(5,667)		(2,394)		-	\$	(454,959)
Total O&M Costs	\$	(67,413)	\$	(51,636)	\$	(34,001)	\$	(14,365)	\$	-	\$	(2,729,755)
Net Cash Flow (\$M)	\$	36,430	\$	29,280	\$	12,076	\$	(2,003)	\$	-	\$	242,475
Cum. Cash Flow	\$	203,122	\$	232,402	\$	244,478	\$	242,475	\$2	242,475		·
Discount Factor		0.00		0.00		0.00		0.00		0.00		
Disc. Net Cash Flow	\$	18	\$	12	\$	4	\$	(1)	\$	-	\$	(582,206)
Disc. Cum Cash Flow	\$	(582,221)	\$	(582,209)	\$	(582,205)	\$	(582,206)	#1	4######		

Basin	Permian (West Texas 8A)	Pattern Oil Production	Project Oil Production
Field	WASSON (BENNETT RANCH UNIT)	180	18,000
Formation	SAN ANDRES		14,000
Technology Case	MPZ + TZ / ROZ (Simultaneous)	â 100	â 10,000
Depth (ft)	5 305		₩ 8,000
Total QOIP (MMBIs)	882	60 60	6,000
Cumulative Recovery (MMbls) *	312		4,000
EUR (MMbls) *	315		2,000
Total ROIP (MMbls)	567	0 5 10 15 20 25 30 35	0 10 20 30 40 50
API Gravity	33	Years	Years
Patterns	176	Net Cashflow	Project CO2 Injection & Production
Existing Injectors Used	75	\$350,000	
Converted Producers Used	0	\$300,000	
New Injectors Drilled	101	\$ \$200,000	70,000 🔓 60,000
Existing Producers Used	156		50,000
New Producers Drilled	48		S 30,000
		5 5- 5 (50,000) 0 4 4 6 8 10 12 14 16 18 20 22	10,000
Pattern Detail		§ (100,000)	-
Cum Oil (Mbbl)	1,018	\$(130,000) \$(200,000)	Years
Cum H2O (Mbw)	5,470 5.37 Bw/Bbl	Years	← CO2 Injection — CO2 Production
Gross CO2 (MMcf)	14,029 13.78 Mcf/Bbl		
Purchased CO2 (MMcf)	3,644 3.58 Mcf/Bbl	Cumulative Cashflow	Project Purchased & Recycled CO2
Recycled CO2 (MMcf)	10,385 10.20 Mcf/Bbl	\$2,500,000	80,000
			60,000
Field Detail		§ \$1,500,000	
Cum Oil (MMbbl)	179.13		
% OOIP Recovered	20.3%	₹	
Cum H2O (MMbw)	963		
Gross CO2 (MMcf)	2,469,139		0 5 10 15 20 25 30 35 40 Years
Purchased CO2 (MMcf)	627,746	s(500,000) Years	
Recycled CO2 (MMcf)	1,841,393		CO2 Purchased — CO2 Recycled
Payback Period (per pattern)	3 years	Pattern Level Cumulative Cashflaw	
Project Length	40 years	S14,000	Assumptions:
		\$12,000	
Field Economics	\$/BBI		Oil Price \$ 35.00
Total Net Revenue (\$M)	\$ 4,820,772		CO2 Purchase Cost 4% of oil price
Total Capital Investment (\$M)	\$ (280,831) \$ 1.57		CO2 Recycle Cost 1% of oil price
Total CO2 Cost (\$M)	\$ (1,523,332) \$ 8.50		
Total O&M Costs (\$M)	\$ (860,855) \$ 4.81		Recycling Plant Costs 1 Year before Breakthru
	\$ (2,665,018) \$ 14.88	≤ \$(2,000) U Z 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32	Well O&M Prod Wells Only
		\$(4.000)	

*Includes "Mother Nature's" waterflood oil displacement of 240 million barrels

Field Cashflow Model					Pattern			I	Field				
State	Permian (West Texa	s 8A)	Γ	Existi	ng Injectors Use	k	0.43	Exi	sting Injectors Used	75			
Field	WASSON SAN AND	RES	(BENNETT	RANCHCIdhWe)tec	Producers Use	k	0.00	Conver	ed Producers Used	0			
Formation	SAN ANDRES		- -	New	Injectors Neede	b	0.57	Ne	w Injectors Needed	101			
Depth	530	5		New P	roducers Neede	k	0.27	New	Producers Needed	48			
Distance from Trunkline	1	0 mile	es	Existing	Producers Use	ł	0.89	Exist	ing Producers Used	156			
# of Patterns	176.0	0	-				•		Ŭ I		4		
Miscibility:	Miscible												
····· · ······························			0	1	2		3	4	5	6	7		8
CO2 Injection (MMcf)			-	16.456	32.916	1	49.372	65.828	82.284	82.287	82	.284	82.284
H2O Injection (Mbw)				4,115	8,230		12,341	16,456	20,571	20,571	20	.571	20,574
				250	2,020		0.400	11.000	14.000	45.467	4.0		0.201
UI Production (MDbl)		_		200	3,020		8,409	11,922	14,203	15,407	13	,002	9,321
CO2 Production (MMcf)				10,201	17,092		22,200	20,570	17 146	20,474	22	,404	51 092
				-	-		1,309	7,095	17,140	20,244	40	,297	51,905
CO2 Purchased (MMcf)				16,456	32,916		48,002	57,932	65,138	54,043	41	,987	30,300
CO2 Recycled (MMcf)				-	-		1,369	7,895	17,146	28,244	40	,297	51,983
Oil Price (\$/Bbl)	\$ 35.00)		\$ 35.00	\$ 35.00	\$	35.00 \$	\$ 35.00	\$ 35.00	\$ 35.00	\$ 3	5.00 \$	35.00
Gravity Adjustment	33			\$ 33.25	\$ 33.25	\$	33.25	\$ 33.25	\$ 33.25	\$ 33.25	\$ 3	3.25 \$	33.25
Gross Revenues (\$M)				\$ 8,310	\$ 100,420	\$	279,609	\$ 396,414	\$ 472,256	\$ 514,274	\$ 460	,904 \$	309,922
Royalty (\$M)	-12.5%			\$ (1,039)	\$ (12,553)\$	(34,951) \$	\$ (49,552)	\$ (59,032)	\$ (64,284)	\$ (57	,613) \$	(38,740)
Severance Taxes (\$M)	-5.0%			\$ (364)	\$ (4,393)\$	(12,233) \$	\$ (17,343)	\$ (20,661)	\$ (22,499)	\$ (20	,165) \$	(13,559)
Ad Valorum (\$M)	-2.5%			\$ (182)	\$ (2,197)\$	(6,116) \$	\$ (8,672)	\$ (10,331)	\$ (11,250)	\$ (10	,082) \$	(6,780)
Net Revenue(\$M)				\$ 6,726	\$ 81,278	\$	226,308	\$ 320,848	\$ 382,233	\$ 416,240	\$ 373	,044 \$	250,843
Capital Costs (\$M)													
New Well - D&C		\$	(15,572)	\$ (15,572)	\$ (15,572)\$	(15,572) \$	\$ (15,572)	\$-	\$ -	\$	- \$	-
Exisiting Well Deepening		\$	(7,480)	\$ (7,480)	\$ (7,480)\$	(7,480) \$	\$ (7,480)	\$-	\$-	\$	- \$	-
Reworks - Producers to Producers		\$	(2,472)	\$ (2,472)	\$ (2,472)\$	(2,472) \$	\$ (2,472)	\$-	\$-	\$	- \$	-
Reworks - Producers to Injectors		\$	-	\$-	\$-	\$	- 9	\$-	\$-	\$-	\$	- \$	-
Reworks - Injectors to Injectors		\$	(1,008)	\$ (1,008)	\$ (1,008)\$	(1,008) \$	\$ (1,008)	\$-	\$-	\$	- \$	-
Surface Equipment (new wells only)		\$	(2,746)	\$ (2,746)	\$ (2,746)\$	(2,746) \$	\$ (2,746)	\$-	\$-	\$	- \$	-
CO2 Recycling Plant		\$	-	\$ -	\$ (131,760)\$	- 9	\$-	\$-	\$-	\$	- \$	-
Water Injection Plant		\$	-	\$-	\$-	\$	- 9	\$-	\$ -	\$-	\$	- \$	-
Trunkline Construction		\$	(2,679)	\$ -	\$-	\$	- 9	\$-	\$-	\$-	\$	- \$	-
Total Capital Costs		\$	(31,958)	\$ (29,278)	\$ (161,038)\$	(29,278)	\$ (29,278)	\$ -	\$-	\$	- \$	-
CO2 Costs (\$M)													
Total CO2 Cost (\$M)				\$ (23,038)	\$ (46,082)\$	(67,682)	\$ (83,868)	\$ (97,194)	\$ (85,545)	\$ (72	,885) \$	(60,614)
O&M Costs (\$M)													
Operating & Maintenance (\$M)				\$ (2,400)	\$ (4,799)\$	(7,199) \$	\$ (9,599)	\$ (11,998)	\$ (11,998)	\$ (11	,998) \$	(11,998)
Lifting Costs (\$M)				\$ (2,628)	\$ (5,228)\$	(7,667) \$	\$ (9,625)	\$ (11,329)	\$ (10,235)	\$ (9	,079) \$	(7,990)
G&A	209	6		(1,005)	(2,005)	(2,973)	(3,845)	(4,665)	(4,447)	(4	,215)	(3,998)
Total O&M Costs				\$ (6,033)	\$ (12,033)\$	(17,840) \$	\$ (23,068)	\$ (27,993)	\$ (26,680)	\$ (25	,293) \$	(23,986)
Net Cash Flow (\$M)		\$	(31,958)	\$ (51,624)	\$ (137,875) \$	111,508	\$ 184,634	\$ 257,046	\$ 304,015	\$ 274	,866 \$	166,242
Cum. Cash Flow		\$	(31,958)	\$ (83,581)	\$ (221,457)\$	(109,949) \$	\$ 74,685	\$ 331,731	\$ 635,746	\$ 910	,612 \$	1,076,855
Discount Factor	25%		1.00	0.80	0.64		0.51	0.41	0.33	0.26		0.21	0.17
Disc. Net Cash Flow		\$	(31,958)	\$ (41,299)	\$ (88,240)\$	57,092 \$	\$ 75,626	\$ 84,229	\$ 79,696	\$ 57	,644 \$	27,891
Disc. Cum Cash Flow		\$	(31.958)	\$ (73.257)	\$ (161.497)\$	(104.405) \$	\$ (28,779)	\$ 55.450	\$ 135.146	\$ 192	789 \$	220.680

	9		10	11	12	1	3		14	15	16	17		18	19
CO2 Injection (MMcf)	82,287		82,287	82,284	82,284		30,615		78,940	77,264	75,588	73,916		73,909	73,906
H2O Injection (Mbw)	20,571		20,571	20,571	20,571		21,405		22,246	23,084	23,918	24,756		24,760	24,760
Oil Production (Mbbl)	6,315		4,548	3,604	3,119		3,087		3,450	3,883	4,344	4,678		4,815	4,815
H2O Production (MBw)	23,024		23,056	22,929	22,753		22,827		23,158	23,595	24,052	24,552		24,900	24,872
CO2 Production (MMcf)	59,059		63,719	66,570	68,327		68,703		67,345	65,539	63,610	61,899		60,632	60,713
CO2 Purchased (MMcf)	23,228		18,568	15,713	13,957		11,912		11,595	11,725	11,979	12,017		13,277	13,193
CO2 Recycled (MMcf)	59,059		63,719	66,570	68,327		68,703		67,345	65,539	63,610	61,899		60,632	60,713
Oil Price (\$/Bbl)	\$ 35.00	\$	35.00	\$ 35.00	\$ 35.00 \$	6	35.00	\$	35.00	\$ 35.00	\$ 35.00	\$ 35.00 \$		35.00	\$ 35.00
Gravity Adjustment	\$ 33.25	\$	33.25	\$ 33.25	\$ 33.25 \$	5	33.25	\$	33.25	\$ 33.25	\$ 33.25	\$ 33.25 \$		33.25	\$ 33.25
Gross Revenues (\$M)	\$ 209,970	\$	151,216	\$ 119,849	\$ 103,697 \$	5 1	02,644	\$	114,699	\$ 129,095	\$ 144,427	\$ 155,546 \$		160,111	\$ 160,111
Royalty (\$M)	\$ (26,246)	\$	(18,902) \$	\$ (14,981) \$	\$ (12,962) \$	6 (12,831)	\$	(14,337)	\$ (16,137)	\$ (18,053)	\$ (19,443) \$		(20,014)	\$ (20,014)
Severance Taxes (\$M)	\$ (9,186)	\$	(6,616) \$	\$ (5,243)	\$ (4,537) \$	5	(4,491)	\$	(5,018)	\$ (5,648)	\$ (6,319)	\$ (6,805) \$		(7,005)	\$ (7,005)
Ad Valorum (\$M)	\$ (4,593)	\$	(3,308) \$	\$ (2,622) \$	\$ (2,268) \$	5	(2,245)	\$	(2,509)	\$ (2,824)	\$ (3,159)	\$ (3,403) \$		(3,502)	\$ (3,502)
Net Revenue(\$M)	\$ 169,944	\$	122,390	\$ 97,003	\$ 83,930 \$	5	33,078	\$	92,835	\$ 104,486	\$ 116,896	\$ 125,895 \$		129,590	\$ 129,590
Capital Costs (\$M)															
New Well - D&C	\$ -	\$	- 9	\$ - 9	\$ - \$	5	-	\$	-	\$ -	\$ -	\$ - \$		-	\$ -
Exisiting Well Deepening	\$ -	\$	- 9	\$ - 3	\$ - \$	5	-	\$	-	\$ -	\$ -	\$ - \$		-	\$ -
Reworks - Producers to Producers	\$ -	\$	- 5	\$ - 5	\$ - \$	5	-	\$	-	\$ -	\$ -	\$ - \$		-	\$ -
Reworks - Producers to Injectors	\$ -	\$	- 9	\$ - 5	\$ - \$	5	-	\$	-	\$ -	\$ -	\$ - \$		-	\$ -
Reworks - Injectors to Injectors	\$ -	\$	- 9	\$ - 5	\$ - \$	5	-	\$	-	\$ -	\$ -	\$ - \$		-	\$ -
Surface Equipment (new wells only)	\$ -	\$	- 9	\$ - 5	\$ - \$	5	-	\$	-	\$ -	\$ -	\$ - \$		-	\$ -
CO2 Recycling Plant	\$ -	\$	- 9	\$ - 5	\$ - \$	5	-	\$	-	\$ -	\$ -	\$ - \$		-	\$ -
Water Injection Plant	\$ -	\$	- 9	\$ - 5	\$ - \$	5	-	\$	-	\$ -	\$ -	\$ - \$		-	\$ -
Trunkline Construction	\$ -	\$	- 9	\$ - 5	\$ - \$	5	-	\$	-	\$ -	\$ -	\$ - \$		-	\$ -
Total Capital Costs	\$ -	\$	- 9	\$ - 5	\$ - \$	5	-	\$	-	\$ -	\$ -	\$ - \$		-	\$ -
CO2 Costs (\$M)															
Total CO2 Cost (\$M)	\$ (53,190)	\$	(48,297)	\$ (45,298)	\$ (43,454) \$	6 (·	40,723)	\$	(39,803)	\$ (39,354)	\$ (39,033)	\$ (38,489) \$		(39,810)	\$ (39,720)
O&M Costs (\$M)															
Operating & Maintenance (\$M)	\$ (11,998)	\$	(11,998) \$	\$ (11,998) \$	\$ (11,998) \$	5 (11,998)	\$	(11,998)	\$ (11,998)	\$ (11,998)	\$ (11,998) \$		(11,998)	\$ (11,998)
Lifting Costs (\$M)	\$ (7,335)	\$	(6,901) \$	\$ (6,633)	\$ (6,468) \$	5	(6,479)	\$	(6,652)	\$ (6,869)	\$ (7,099)	\$ (7,308) \$		(7,429)	\$ (7,422)
G&A	(3,867)		(3,780)	(3,726)	(3,693)		(3,695)		(3,730)	(3,773)	(3,819)	(3,861)		(3,885)	(3,884)
Total O&M Costs	\$ (23,200)	\$	(22,679) \$	\$ (22,358)	\$ (22,159) \$	5 (2	22,172)	\$	(22,380)	\$ (22,641)	\$ (22,917)	\$ (23,167) \$		(23,313)	\$ (23,304)
Net Cash Flow (\$M)	\$ 93.554	\$	51.414	\$ 29.347	\$ 18.317 \$	5	20.183	\$	30.651	\$ 42.492	\$ 54.946	\$ 64.239 \$		66.467	\$ 66.566
Cum. Cash Flow	\$ 1,170,409	\$	1,221,823	\$ 1,251,170	\$ 1,269,487 \$	5 1,2	39,670	\$	1,320,321	\$ 1,362,813	\$ 1,417,759	\$ 1,481,998 \$	1,	548,465	\$ 1,615,031
Discount Factor	0.13	,	0.11	0.09	0.07	,	0.05	ŕ	0.04	0.04	0.03	0.02	,	0.02	0.01
Disc. Net Cash Flow	\$ 12,557	\$	5,521	\$ 2,521	\$ 1,259 \$	5	1,110	\$	1,348	\$ 1,495	\$ 1,547	\$ 1,447 \$		1,197	\$ 959
Disc. Cum Cash Flow	\$ 233,237	\$	238,757	\$ 241,278	\$ 242,537 \$	5 2	43,647	\$	244,995	\$ 246,490	\$ 248,036	\$ 249,483 \$		250,680	\$ 251,640

Field Cashflow Model State

State Field Formation Depth Distance from Trunkline # of Patterns Miscibility:

		20		21		22		23		24		25		26		27		28		29		30		31
CO2 Injection (MMcf)		73,909		73,909		73,906		73,909		73,909		73,906		73,909		73,909		73,906		73,909		73,909		73,909
H2O Injection (Mbw)		24,756		24,760		24,760		24,760		24,760		24,760		24,760		24,760		24,760		24,760		24,760		24,760
Oil Production (Mbbl)		4,657		4,368		4,048		3,749		3,506		3,326		3,168		3,027		2,915		2,805		2,696		2,591
H2O Production (MBw)		24,915		24,964		25,048		25,087		25,091		25,034		25,027		25,003		24,967		24,943		24,932		24,918
CO2 Production (MMcf)		61,030		61,670		62,315		63,022		63,659		64,286		64,733		65,173		65,560		65,923		66,239		66,556
CO2 Purchased (MMcf)		12,880		12,239		11,591		10,887		10,250		9,620		9,177		8,737		8,346		7,987		7,670		7,353
CO2 Recycled (MMcf)		61,030		61,670		62,315		63,022		63,659		64,286		64,733		65,173		65,560		65,923		66,239		66,556
	¢	05.00	¢	05.00	¢	05.00	¢	05.00	¢	25.00	•	05.00	¢	05.00	¢	05.00 \$		05.00	¢	05.00	¢	05.00	¢	05.00
	\$	35.00	\$	35.00 3	\$ •	35.00	\$	35.00	\$	35.00 3	Þ	35.00	Э	35.00	\$ \$	35.00 \$		35.00	\$	35.00	\$ \$	35.00	\$ \$	35.00
Gravity Adjustment	\$	33.25	\$	33.25	\$	33.25	\$	33.25	\$	33.25	5	33.25	\$	33.25	\$	33.25 \$		33.25	\$	33.25	\$	33.25	\$	33.25
Gross Revenues (\$M)	\$	154,844	\$	145,247 \$	\$	134,596	\$	124,648	\$	116,572	\$1	10,603	\$	105,336	\$	100,654 \$		96,909	\$	93,281	\$	89,653	\$	86,141
Royalty (\$M)	\$	(19,355)	\$	(18,156) \$	\$	(16,825)	\$	(15,581)	\$	(14,571) \$	\$	(13,825)	\$	(13,167)	\$	(12,582) \$		(12,114)	\$	(11,660)	\$	(11,207)	\$	(10,768)
Severance Taxes (\$M)	\$	(6,774)	\$	(6,355) \$	\$	(5,889)	\$	(5,453)	\$	(5,100) \$	\$	(4,839)	\$	(4,608)	\$	(4,404) \$		(4,240)	\$	(4,081)	\$	(3,922)	\$	(3,769)
Ad Valorum (\$M)	\$	(3,387)	\$	(3,177) \$	\$	(2,944)	\$	(2,727)	\$	(2,550) \$	\$	(2,419)	\$	(2,304)	\$	(2,202) \$		(2,120)	\$	(2,041)	\$	(1,961)	\$	(1,884)
Net Revenue(\$M)	\$	125,327	\$	117,559 \$	\$	108,939	\$	100,887	\$	94,350 \$	\$	89,519	\$	85,256	\$	81,467 \$		78,436	\$	75,499	\$	72,563	\$	69,721
Capital Costs (\$M)																								
New Well - D&C	\$	-	\$	- 5	\$	-	\$	-	\$	- 9	\$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Exisiting Well Deepening	\$	-	\$	- 9	\$	-	\$	-	\$	- 9	\$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Reworks - Producers to Producers	\$	-	\$	- 9	\$	-	\$	-	\$	- 9	\$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Reworks - Producers to Injectors	\$	-	\$	- 9	\$	-	\$	-	\$	- 9	\$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Reworks - Injectors to Injectors	\$	-	\$	- 9	\$	-	\$	-	\$	- 9	\$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Surface Equipment (new wells only))\$	-	\$	- 9	\$	-	\$	-	\$	- 9	\$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
CO2 Recycling Plant	\$	-	\$	- 9	\$	-	\$	-	\$	- 9	\$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Water Injection Plant	\$	-	\$	- 9	\$	-	\$	-	\$	- 9	\$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Trunkline Construction	\$	-	\$	- 9	\$	-	\$	-	\$	- 9	\$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
Total Capital Costs	\$	-	\$	- 9	\$	-	\$	-	\$	- 9	\$	-	\$	-	\$	- \$		-	\$	-	\$	-	\$	-
CO2 Costs (\$M)																								
Total CO2 Cost (\$M)	\$	(39 392)	\$	(38 719)	\$	(38.038)	\$	(37 300)	\$	(36 631)	\$	(35 968)	\$	(35 504)	\$	(35.042) \$		(34 630)	\$	(34 255)	\$	(33 922)	\$	(33 589)
0&M Costs (\$M)	Ψ	(00,002)	Ψ	(00,710)	Ψ	(00,000)	Ψ	(07,000)	Ψ	(00,001) (Ψ.	(00,000)	Ψ	(00,004)	Ψ	(00,042) \$		(04,000)	Ψ	(04,200)	Ψ	(00,022)	Ψ	(00,000)
Operating & Maintenance (\$M)	\$	(11,998)	\$	(11,998)	\$	(11,998)	\$	(11,998)	\$	(11,998)	\$	(11,998)	\$	(11,998)	\$	(11,998) \$		(11,998)	\$	(11,998)	\$	(11,998)	\$	(11,998)
Lifting Costs (\$M)	\$	(7,393)	\$	(7,333) \$	\$	(7,274)	\$	(7,209)	\$	(7,149) \$	\$	(7,090)	\$	(7,049)	\$	(7,007) \$		(6,970)	\$	(6,937)	\$	(6,907)	\$	(6,877)
G&A		(3,878)		(3,866)		(3,854)		(3,841)		(3,829)		(3,818)		(3,809)		(3,801)		(3,794)		(3,787)		(3,781)		(3,775)
Total O&M Costs	\$	(23,269)	\$	(23,197) \$	\$	(23,127)	\$	(23,049)	\$	(22,977)	\$	(22,906)	\$	(22,856)	\$	(22,807) \$		(22,762)	\$	(22,722)	\$	(22,686)	\$	(22,650)
Net Cash Flow (\$M)	\$	62.666	\$	55.642	\$	47.774	\$	40.538	\$	34.743	\$	30.645	\$	26.896	\$	23.619 \$		21.043	\$	18.522	\$	15.954	\$	13.481
Cum. Cash Flow	\$	1,677,697	\$	1,733,339	\$ 1.	781,113	\$	1,821,651	\$	1,856,394	\$1.8	387,039	\$	1,913,935	\$	1,937,553 \$	1.9	958,597	\$	1,977,119	\$	1,993,073	\$	2,006,555
Discount Factor	Ŧ	0.01	Ŧ	0.01	,	0.01	Ŧ	0.01	Ŧ	0.00	,•	0.00	Ŧ	0.00	Ŧ	0.00	.,.	0.00	Ŧ	0.00	÷	0.00	Ŧ	0.00
Disc. Net Cash Flow	\$	722	\$	513 \$	\$	353	\$	239	\$	164 9	\$	116	\$	81	\$	57 \$		41	\$	29	\$	20	\$	13
Disc. Cum Cash Flow	\$	252,362	\$	252,875	\$	253,228	\$	253,467	\$	253,631	\$ 2	253,747	\$	253,828	\$	253,885 \$	2	253,926	\$	253,955	\$	253,974	\$	253,988

Field Cashflow Model State

State Field Formation Depth Distance from Trunkline # of Patterns

Miscibility.

wiiscibiiity.											_			
		32	33		34		35		36	37		38	Tot	tals
CO2 Injection (MMcf)		73,909	59,833		45,049		30,268		15,484	704		-		2,469,139
H2O Injection (Mbw)	L	24,760	31,796		39,188		46,580		43,652	38,699		26,710		935,528
Oil Production (Mbbl)		2,499	2,464		2,446		2,436		2,035	1,573		1,067		179,133
H2O Production (MBw)	1	24,908	26,625		32,021		38,034		34,904	29,920		23,221		962,650
CO2 Production (MMcf)		66,838	66,510		56,890		45,679		32,497	19,033		6,100		1,919,403
CO2 Purchased (MMcf)		7,072	-		-		-		-	-		-		627,746
CO2 Recycled (MMcf)		66,838	59,833		45,049		30,268		15,484	704		-		1,841,393
Oil Price (\$/Bbl)	\$	35.00	\$ 35.00	\$	35.00	\$	35.00	\$	35.00	\$ 35.00	\$	35.00		
Gravity Adjustment	\$	33.25	\$ 33.25	\$	33.25	\$	33.25	\$	33.25	\$ 33.25	\$	-		
Gross Revenues (\$M)	\$	83,098	\$ 81,928	\$	81,343	\$	80,992	\$	67,649	\$ 52,317	\$	-	\$	5,920,702
Royalty (\$M)	\$	(10,387)	\$ (10,241)	\$	(10,168)	\$	(10,124)	\$	(8,456)	\$ (6,540)	\$	-	\$	(740,088)
Severance Taxes (\$M)	\$	(3,636)	\$ (3,584)	\$	(3,559)	\$	(3,543)	\$	(2,960)	\$ (2,289)	\$	-	\$	(259,031)
Ad Valorum (\$M)	\$	(1,818)	\$ (1,792)	\$	(1,779)	\$	(1,772)	\$	(1,480)	\$ (1,144)	\$	-	\$	(129,515)
Net Revenue(\$M)	\$	67,258	\$ 66,310	\$	65,837	\$	65,553	\$	54,754	\$ 42,344	\$	-	\$	4,792,069
Capital Costs (\$M)														
New Well - D&C	\$	-	\$ -	\$	-	\$	-	\$	-	\$ -	\$	-	\$	(77,862)
Exisiting Well Deepening	\$	-	\$ -	\$	-	\$	-	\$	-	\$ -	\$	-	\$	(37,399)
Reworks - Producers to Producers	\$	-	\$ -	\$	-	\$	-	\$	-	\$ -	\$	-	\$	(12,358)
Reworks - Producers to Injectors	\$	-	\$ -	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-
Reworks - Injectors to Injectors	\$	-	\$ -	\$	-	\$	-	\$	-	\$ -	\$	-	\$	(5,042)
Surface Equipment (new wells only)	\$	-	\$ -	\$	-	\$	-	\$	-	\$ -	\$	-	\$	(13,731)
CO2 Recycling Plant	\$	-	\$ -	\$	-	\$	-	\$	-	\$ -	\$	-	\$	(131,760)
Water Injection Plant	\$	-	\$ -	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-
Trunkline Construction	\$	-	\$ -	\$	-	\$	-	\$	-	\$ -	\$	-	\$	(2,679)
Total Capital Costs	\$	-	\$ -	\$	-	\$	-	\$	-	\$ -	\$	-	\$	(280,831)
CO2 Costs (\$M)			 											
Total CO2 Cost (\$M)	\$	(33,294)	\$ (20,942)	\$	(15,767)	\$	(10,594)	\$	(5,420)	\$ (246)	\$	-	\$	(1,523,332)
O&M Costs (\$M)		((_	(_	(_		 ()	_			(
Operating & Maintenance (\$M)	\$	(11,998)	\$ (11,998)	\$	(11,998)	\$	(11,998)	\$	(11,998)	\$ (9,599)	\$	(7,199)	\$	(424,735)
Lifting Costs (\$M)	\$	(6,852)	\$ (7,272)	\$	(8,617)	\$	(10,117)	\$	(9,235)	\$ (7,873)	\$	(6,072)	\$	(281,611)
G&A		(3,770)	(3,854)		(4,123)		(4,423)		(4,247)	(3,494)		(2,654)	\$	(141,269)
Total O&M Costs	\$	(22,620)	\$ (23,125)	\$	(24,738)	\$	(26,539)	\$	(25,479)	\$ (20,966)	\$	(15,925)	\$	(847,614)
Net Cash Flow (\$M)	\$	11,344	\$ 22,244	\$	25,332	\$	28,420	\$	23,854	\$ 21,131	\$	(15,925)	\$	2,140,291
Cum. Cash Flow	\$	2,017,899	\$ 2,040,143	\$	2,065,475	\$	2,093,895	\$	2,117,749	\$ 2,138,881	#	#######		
Discount Factor		0.00	0.00		0.00		0.00		0.00	0.00		0.00		
Disc. Net Cash Flow	\$	9	\$ 14	\$	13	\$	12	\$	8	\$ 5	\$	(3)	\$	254,048
Disc. Cum Cash Flow	\$	253.997	\$ 254.011	\$	254.024	\$	254.035	\$	254,043	\$ 254.048	\$.	254.045		

Basin	Permian (East NM)		Pattern Oil Production	Project 0	Dil Production
Field	VACUUM			60,000	
Formation	GRAYBURG-SAN ANDRES			40.000	
Technology Case	MPZ + TZ / ROZ (Simultaneo	ous)		a	
Depth (ft)	4,847			₹ 30,000	
Total OOIP (MMBIs)	3,360		60	20,000	
Cumulative Recovery (MMbls) *	1,590			10,000	The second se
EUR (MMbls) *	1,609				
Total ROIP (MMbls)	1,751		0 5 10 15 20 25 30 35	0 10	20 30 40 50
API Gravity	36		Tears		Years
Patterns	480		Net Cashflow	Project CO2 In	iection & Production
Existing Injectors Used	200		\$1,200,000	300.000	
Converted Producers Used	270		\$1,000,000	250,000	••••••
New Injectors Drilled	10		8 \$600,000	§ 200,000	
Existing Producers Used	525			150,000	
New Producers Drilled	0			8 100,000	
			\$ (200,000) 0 2 4 6 8 10 12 14 16 18 20 22	50,000	
Pattern Detail			<u>ة</u> \$(400,000) \$(600,000)		15 20 25 30 35 40
Cum Oil (Mbbl)	1,203		\$(800,000)		Years
Cum H2O (Mbw)	6,300	5.24 Bw/Bbl	Years		Injection — CO2 Production
Gross CO2 (MMcf)	16,169	13.44 Mcf/Bbl			
Purchased CO2 (MMcf)	4,208	3.50 Mcf/Bbl	Cumulative Cashflow	Project Purcha	sed & Recycled CO2
Recycled CO2 (MMcf)	11,961	9.94 Mcf/Bbl	\$9,000,000	250,000	
				200,000	
Field Detail				150,000	
Cum Oil (MMbbl)	577.44			8 100,000	\
% OOIP Recovered	17.2%			50,000	<u> </u>
Cum H2O (MMbw)	3,024		§ \$1,000,000	· .	
Gross CO2 (MMcf)	7,761,312		E S	0 5 10	15 20 25 30 35 40 Years
Purchased CO2 (MMcf)	1,970,256		\$(2,000,000)		
Recycled CO2 (MMcf)	5,791,056				d – CO2 Recycled
Payback Period (per pattern)	3 ye	ears	Dettern Level Cumulative Ceehflew		
Project Length	37 ye	ears	s20,000	Assumptions:	
Field Economics		\$/BBI		Oil Price	\$ 35.0
Total Net Revenue (\$M)	\$ 15,857,787			CO2 Purchase Cost	4% of oil price
Total Capital Investment (\$M)	\$ (671,833) \$	5 1.16		CO2 Recycle Cost	1% of oil price
Total CO2 Cost (\$M)	\$ (4,785,228) \$	8.29			
Total O&M Costs (\$M)	\$ (2,239,089) \$	3.88		Recycling Plant Costs	1 Year before Breakthru
	\$ (7,696,150) \$	\$ 13.33	E 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32	Well O&M	Prod Wells Only
			\$(5,000)		
* In aluada a "Mather Naturala" waterf	1		Tears		

35.00

*Includes "Mother Nature's" waterflood oil displacement of 1,259 million barrels

Field Cashflow Model					Pattern				Field						
State	Permian (East NM)			Existir	ng Injectors U	sed	0.42	Ex	isting Injectors Used		200				
Field	VACUUM			Converted	Producers U	sed	0.56	Conve	rted Producers Used		270				
Formation	GRAYBURG-SAN AN	NDRE	S	New	Injectors Nee	led	0.02	N	ew Injectors Needed		10				
Depth	4846.7	5		New Pr	roducers Nee	led	0.00	Nev	w Producers Needed		0				
Distance from Trunkline	1	0 mile	es	Existing	Producers U	sed	1.09	Exis	ting Producers Used		525				
# of Patterns	480.0	0													
Miscibility:	Miscible														
-			0	1	2		3	4	5		6		7		8
CO2 Injection (MMcf)				56,102	112,2	05	168,307	224,410	280,522		280,522		280,522		280,522
H2O Injection (Mbw)				14,026	28,0	51	42,077	56,102	70,128		70,128		70,128		70,128
Oil Production (Mbbl)				1 075	11 1	24	27 946	38 755	45 437		48 864		41 472		26 563
H2O Production (MBw)				35.040	60.6)5)5	75 456	89.962	105 216		86 208		77 078		78 634
CO2 Production (MMcf)				-	1	06	9.773	36.077	71.395		110.506		153,158		188.688
		1		50.400	110.0		450.504	400.000	000 400	1	470.040		407.000	_	04.004
CO2 Purchased (MMof)		_		50,102	112,0	99	108,034	100,333	209,120		110,016		127,303		100 600
	l.			-	1	00	9,115	30,077	71,395		110,500		155,156		100,000
	\$ 35.00		\$	35.00	¢ 35	20 ¢	35.00	\$ 35.00	\$ 35.00	¢	35.00	¢	35.00	¢	35.00
Crovity Adjustment	φ 33.00 26		¢.	34.00	¢ 34	00 \$ 00 \$	34.00	¢ 34.00	¢ 34.00	φ	34.00	φ	34.00	φ	34.00
	30		φ	34.00	φ 34.	οφ 10 φ	34.00	\$ 34.00	φ 34.00	ф Ф	34.00	ф Ф	34.00	ф Ф	34.00
Gross Revenues (\$IVI)	40 50/		Þ	36,557	\$ 380,5	52 \$ 70\ @	950,150	\$ 1,317,677	\$ 1,544,851	\$ ¢	1,661,376	Э С	1,410,048	Э Ф	903,149
	-12.5%		Þ	(4,570)	\$ (47,5	73) \$ 20) ¢	(118,769)	\$ (164,710)	\$ (193,106)	\$ ¢	(207,672)	\$ ¢	(176,256)	Э Ф	(112,894)
	-3.2%		Þ	(1,008)	\$ (10,4	90) \$ 40) \$	(26,189)	\$ (36,318)	\$ (42,580)	\$ ¢	(45,792)	\$ ¢	(38,864)	Э Ф	(24,893)
	-4.5%		Þ	(1,452)	\$ (15,1	19) \$	(37,745)	\$ (52,345)	\$ (61,369)	\$ ¢	(65,998)	\$ ¢	(56,014)	Э Ф	(35,878)
Net Revenue(\$M)			\$	29,527	\$ 307,4	J1 \$	0 767,448	\$ 1,064,304	\$ 1,247,796	\$	1,341,914	\$	1,138,913	\$	729,485
		¢	(001) ¢	(001)	¢ (0	<u>ጋ4)</u>	(001)	¢ (004)	¢	¢		¢		<u>م</u>	
		¢	(891) \$	(891)	ຈ (ອ	91) Q	(00,050)	\$ (891) \$	ን - ድ	ф Ф	-	¢ Þ	-	¢	-
Exisiting well Deepening		¢	(32,038) \$ (7,055) \$	(32,058)	\$ (32,0	τς (οc	(32,038)	\$ (32,038) (7,055)	ው - ድ	¢ ¢	-	ф Ф	-	¢	-
Reworks - Producers to Producers		¢ ¢	(1,000) \$ (1,510) \$	(7,000)		το) 10) Φ	(7,000)	Φ (7,000)	ֆ - ¢	¢ ¢	-	¢	-	¢	-
Reworks - Floducers to Injectors		ф Ф	(1,313) ¢	(1,313)	ົງ (1,0 ເຊິ່ງເ	າວ) ອ ດວ\ ¢	(1,513)	φ (1,513) ¢ (2,603)	ֆ - «	ф Ф	-	ф Ф	-	ф Ф	-
Surface Equipment (now wells only)		ф Ф	(2,003) \$ (156) \$	(2,003)	φ (2,0 ¢ (1	το) φ τοι φ	(2,003)	φ (2,003) ¢ (156)	ֆ - «	ф Ф	-	ф Ф	-	ф Ф	-
CO2 Recycling Plant		ф Ф	(150) \$	(150)	ው (I ድ	φ (ΟC	(150)	\$ (150) ¢	ֆ - «	ф Ф	-	ф Ф	-	ф Ф	-
Weter Injection Plant		ф Ф	- J ¢	(441,771)	ው - ድ	φ Φ	-	φ - ¢	ֆ - «	ф Ф	-	ф Ф	-	ф Ф	-
		φ ¢	φ - () () () ()	-	- ው ም	ው ድ	-	ው - ድ	ው - ድ	ф Ф	-	φ ¢	-	φ Φ	-
Trunkline Construction		¢	(2,084) \$ (49,160) \$	-	φ ¢ (λελ	ው 76\ ው	- (AE A76)	Φ - Φ (ΛΕ Λ7C)	ֆ - «	¢	-	¢ ¢	-	¢	-
Total Capital Costs		φ	(40,100) \$	(407,247)	φ (45,4	/O) ֆ	(45,476)	φ (45,476)	φ -	φ	-	φ	-	φ	-
CO2 Costs (\$M)															
Total CO2 Cost (\$M)			\$	(78 543)	\$ (156.0	76) \$	(225 369)	\$ (276 293)	\$ (317 765)	\$	(276 699)	\$	(231 914)	\$	(194 608)
O&M Costs (\$M)			Ψ	(10,040)	φ (100,5	<i>ιο</i>) φ	(220,000)	φ (270,200)	φ (017,700)	Ψ	(270,000)	Ψ	(201,514)	Ψ	(104,000)
Operating & Maintenance (\$M)			\$	(5,852)	\$ (11,7	04) \$	(17,556)	\$ (23,409)	\$ (29,261)	\$	(29,261)	\$	(29,261)	\$	(29,261)
Lifting Costs (\$M)			¢	(0 0 2 0)	¢ (170	50) ¢	(25.850)	\$ (32,170)	\$ (37 662)	¢	(33 769)	¢	(20 639)	¢	(26 200)
	200		φ	(3,023)	φ (17,3	JU)φ 21)	(23,030)	φ (32,179) (11 119)	φ (37,003) (12,295)	φ	(12,606)	φ	(29,030)	φ	(20,299)
Total O&M Costs	207	U	¢	(2,370)	(J,9 ¢ (25.5	51) 85) ¢	(0,001)	(11,110) \$ (66,705)	(10,000) ¢ (80,200)	¢	(75,625)	¢	(70,679)	¢	(11,112)
			\$	(17,007)	ψ (აა,ა	JJJ Þ	(52,008)	ψ (00,705)	ψ (ου,ου9)	φ	(10,000)	φ	(10,010)	ψ	(00,072)
Net Cash Flow (\$M)		\$	(48,160) \$	(554,120)	\$ 69,3	65 \$	444,516	\$ 675,830	\$ 849,722	\$	989,580	\$	836,321	\$	468,205
Cum. Cash Flow		\$	(48,160) \$	(602,280)	\$ (532,9	15) \$	(88,399)	\$ 587,431	\$ 1,437,153	\$	2,426,733	\$	3,263,054	\$	3,731,259
Discount Factor	25%		1.00	0.80	0.	54	0.51	0.41	0.33		0.26		0.21		0.17
Disc. Net Cash Flow		\$	(48,160) \$	(443,296)	\$ 44,3	94 \$	227,592	\$ 276,820	\$ 278,437	\$	259,413	\$	175,389	\$	78,552
Disc. Cum Cash Flow		\$	(48,160) \$	(491,456)	\$ (447,0	52)\$	(219,470)	\$ 57,350	\$ 335,787	\$	595,199	\$	70,589	\$	849,140

- Miscibility:

	9		10		11		12	13		14		15		16		17		18		19
CO2 Injection (MMcf)	280,522		280,512		280,512		275,184	269,472		263,770		258,058		252,346		251,962		251,962		251,962
H2O Injection (Mbw)	70,128		70,128		70,128		72,797	75,648		78,509		81,360		84,221		84,403		84,413		84,403
Oil Production (Mbbl)	17,981		14,016		12,749		14,006	16,157		17,530		18,269		18,221		17,021		15,629		14,525
H2O Production (MBw)	79,968		80,006		79,046		77,818	78,029		79,171		80,726		82,579		84,403		84,960		84,970
CO2 Production (MMcf)	208,013		218,371		224,189		225,408	220,694		215,664		211,334		208,262		206,928		209,232		212,131
CO2 Purchased (MMcf)	 72,509		62,141		56,323		49,776	48,778		48,106		46,723		44,083		45,034		42,730		39,830
CO2 Recycled (MMcf)	208,013		218,371		224,189		225,408	220,694		215,664		211,334		208,262		206,928		209,232		212,131
		•		<u> </u>		•			_		<u> </u>				^					
Oil Price (\$/Bbl)	\$ 35.00	\$	35.00	\$	35.00	\$	35.00 \$	35.00	\$	35.00	\$	35.00 \$	5	35.00	\$	35.00 \$		35.00 \$	5	35.00
Gravity Adjustment	\$ 34.00	\$	34.00	\$	34.00	\$	34.00 \$	34.00	\$	34.00	\$	34.00 \$	5	34.00	\$	34.00 \$		34.00 \$	5	34.00
Gross Revenues (\$M)	\$ 611,347	\$	476,544	\$	433,459	\$	476,218 \$	549,331	\$	596,006	\$	621,139 \$	5	619,507	\$	578,707 \$		531,379 \$	5	493,843
Royalty (\$M)	\$ (76,418)	\$	(59,568)	\$	(54,182)	\$	(59,527) \$	(68,666)	\$	(74,501)	\$	(77,642) \$	\$	(77,438)	\$	(72,338) \$		(66,422) \$	5	(61,730)
Severance Taxes (\$M)	\$ (16,850)	\$	(13,135)	\$	(11,947)	\$	(13,126) \$	(15,141)	\$	(16,427)	\$	(17,120) \$	5	(17,075)	\$	(15,951) \$		(14,646) \$	5	(13,612)
Ad Valorum (\$M)	\$ (24,286)	\$	(18,931)	\$	(17,219)	\$	(18,918) \$	(21,822)	\$	(23,676)	\$	(24,675) \$	\$	(24,610)	\$	(22,989) \$		(21,109) \$	5	(19,618)
Net Revenue(\$M)	\$ 493,793	\$	384,911	\$	350,110	\$	384,647 \$	443,702	\$	481,402	\$	501,702 \$	\$	500,384	\$	467,429 \$		429,202 \$	5	398,883
Capital Costs (\$M)																				
New Well - D&C	\$ -	\$	-	\$	-	\$	- \$	-	\$	-	\$	- 9	\$	-	\$	- \$		- \$	5	-
Exisiting Well Deepening	\$ -	\$	-	\$	-	\$	- \$	-	\$	-	\$	- 9	5	-	\$	- \$		- \$	5	-
Reworks - Producers to Producers	\$ -	\$	-	\$	-	\$	- \$	-	\$	-	\$	- 9	5	-	\$	- \$		- \$;	-
Reworks - Producers to Injectors	\$ -	\$	-	\$	-	\$	- \$	-	\$	-	\$	- 9	5	-	\$	- \$		- \$	5	-
Reworks - Injectors to Injectors	\$ -	\$	-	\$	-	\$	- \$	-	\$	-	\$	- 9	5	-	\$	- \$		- \$;	-
Surface Equipment (new wells only)	\$ -	\$	-	\$	-	\$	- \$	-	\$	-	\$	- 9	5	-	\$	- \$		- \$	5	-
CO2 Recycling Plant	\$ -	\$	-	\$	-	\$	- \$	-	\$	-	\$	- 9	5	-	\$	- \$		- \$	5	-
Water Injection Plant	\$ -	\$	-	\$	-	\$	- \$	-	\$	-	\$	- 9	5	-	\$	- \$		- \$;	-
Trunkline Construction	\$ -	\$	-	\$	-	\$	- \$	-	\$	-	\$	- 9	5	-	\$	- \$		- \$;	-
Total Capital Costs	\$ -	\$	-	\$	-	\$	- \$	-	\$	-	\$	- 9	₿	-	\$	- \$		- \$	5	-
CO2 Costs (\$M)																				
Total CO2 Cost (\$M)	\$ (174,317)	\$	(163,427)	\$	(157,319)	\$	(148,579) \$	(145,532)	\$	(142,830)	\$	(139,380) \$	5	(134,608)	\$	(135,472) \$		(133,053) \$	5	(130,008)
O&M Costs (\$M)																				
Operating & Maintenance (\$M)	\$ (29,261)	\$	(29,261)	\$	(29,261)	\$	(29,261) \$	(29,261)	\$	(29,261)	\$	(29,261) \$	5	(29,261)	\$	(29,261) \$		(29,261) \$	5	(29,261)
Lifting Costs (\$M)	\$ (24,487)	\$	(23,506)	\$	(22,949)	\$	(22,956) \$	(23,546)	\$	(24,175)	\$	(24,749) \$	\$	(25,200)	\$	(25,356) \$		(25,147) \$	5	(24,874)
G&A	(10,750)		(10,553)		(10,442)		(10,443)	(10,561)		(10,687)		(10,802)		(10,892)		(10,923)		(10,882)		(10,827)
Total O&M Costs	\$ (64,498)	\$	(63,320)	\$	(62,652)	\$	(62,660) \$	(63,369)	\$	(64,123)	\$	(64,812) \$	\$	(65,353)	\$	(65,540) \$		(65,290) \$	5	(64,961)
Net Cash Flow (\$M)	\$ 254,978	\$	158,164	\$	130,140	\$	173,408 \$	234,801	\$	274,448	\$	297,511	5	300,422	\$	266,417 \$		230,859 \$	5	203,914
Cum. Cash Flow	\$ 3,986,238	\$	4,144,401	\$	4,274,542	\$	4,447,949 \$	4,682,750	\$	4,957,199	\$	5,254,710	5	5,555,132	\$	5,821,549 \$	6	,052,408 \$	5 6	6,256,322
Discount Factor	0.13		0.11		0.09		0.07	0.05		0.04		0.04	-	0.03		0.02		0.02		0.01
Disc. Net Cash Flow	\$ 34,223	\$	16,983	\$	11,179	\$	11,916 \$	12,908	\$	12,070	\$	10,468 \$	5	8,456	\$	5,999 \$		4,159 \$	5	2,939
Disc. Cum Cash Flow	\$ 883,363	\$	900,346	\$	911,525	\$	923,441 \$	936,349	\$	948,420	\$	958,888	5	967,344	\$	973,343 \$		977,502 \$;	980,440

		20		21	2	22		23		24		25		26		27		28		29		30		31
CO2 Injection (MMcf)		251,962		251,962	2	251,962		251,962		251,962		251,962		251,962		251,962		251,962		251,962		229,248		178,858
H2O Injection (Mbw)		84,413		84,403		84,413		84,403		84,413		84,403		84,413		84,403		84,403		84,403		95,760		120,960
Oil Production (Mbbl)		13,411		12,461		11,808		11,251		10,800		10,464		10,195		9,965		9,706		9,446		9,350		9,331
H2O Production (MBw)		85,152		85,219		85,238		85,027		84,931		84,845		84,576		84,461		84,470		84,518		85,565		98,621
CO2 Production (MMcf)		214,579		216,931	2	218,640		220,608		222,067		223,190		224,573		225,446		226,099		226,666		230,352		210,749
CO2 Purchased (MMcf)		37,382		35.030		33.322		31,354		29.894		28,771		27,389		26.515		25,862		25,296		-		-
CO2 Recycled (MMcf)		214.579		216.931	2	18.640		220.608		222.067		223.190		224.573		225.446		226.099		226,666		229.248		178.858
		1		.,		-1		.,		/		.,		1						.,		- ,		
Oil Price (\$/Bbl)	\$	35.00	\$	35.00 \$;	35.00	\$	35.00	\$	35.00	\$	35.00 \$	\$	35.00	\$	35.00	\$	35.00	\$	35.00	\$	35.00	\$	35.00
Gravity Adjustment	\$	34.00	\$	34.00 \$;	34.00	\$	34.00	\$	34.00	\$	34.00 \$	\$	34.00	\$	34.00	\$	34.00	\$	34.00	\$	34.00	\$	34.00
Gross Revenues (\$M)	\$	455,981	\$	423,667 \$	5 4	01,472	\$	382,541	\$	367,200	\$	355,776 \$	\$	346,637	\$	338,803	\$	329,990	\$	321,178	\$	317,914	\$	317,261
Royalty (\$M)	\$	(56,998)	\$	(52,958) \$	5 ((50,184)	\$	(47,818)	\$	(45,900)	\$	(44,472) \$	\$	(43,330)	\$	(42,350)	\$	(41,249)	\$	(40,147)	\$	(39,739)	\$	(39,658)
Severance Taxes (\$M)	\$	(12,568)	\$	(11,677) \$; ((11,066)	\$	(10,544)	\$	(10,121)	\$	(9,806) \$	\$	(9,554)	\$	(9,338)	\$	(9,095)	\$	(8,852)	\$	(8,762)	\$	(8,745)
Ad Valorum (\$M)	\$	(18,114)	\$	(16,830) \$; ((15,948)	\$	(15,196)	\$	(14,587)	\$	(14,133) \$	\$	(13,770)	\$	(13,459)	\$	(13,109)	\$	(12,759)	\$	(12,629)	\$	(12,603)
Net Revenue(\$M)	\$	368,301	\$	342,201 \$	3	324,274	\$	308,983	\$	296,592	\$	287,365 \$	\$	279,983	\$	273,656	\$	266,537	\$	259,419	\$	256,783	\$	256,256
Capital Costs (\$M)		,		, ,				,		,				,		,		,		,		,		,
New Well - D&C	\$	-	\$	- \$;	-	\$	-	\$	-	\$	- \$	\$	-	\$	- :	\$	-	\$	-	\$	- 5	\$	-
Exisiting Well Deepening	\$	-	\$	- \$;	-	\$	-	\$	- :	\$	- \$	\$	-	\$	- :	\$	-	\$	-	\$	- 5	\$	-
Reworks - Producers to Producers	\$	-	\$	- \$;	-	\$	-	\$	- :	\$	- \$	\$	-	\$	- :	\$	-	\$	-	\$	- 5	\$	-
Reworks - Producers to Injectors	\$	-	\$	- \$;	-	\$	-	\$	- :	\$	- \$	\$	-	\$	- :	\$	-	\$	-	\$	- 5	\$	-
Reworks - Injectors to Injectors	\$	-	\$	- \$;	-	\$	-	\$		\$	- \$	\$	-	\$	- :	\$	-	\$	-	\$	- 5	\$	-
Surface Equipment (new wells only)	\$	-	\$	- \$;	-	\$	-	\$	- :	\$	- \$	\$	-	\$	- :	\$	-	\$	-	\$	- 5	\$	-
CO2 Recycling Plant	\$	-	\$	- \$;	-	\$	-	\$		\$	- \$	\$	-	\$	- :	\$	-	\$	-	\$	- 5	\$	-
Water Injection Plant	\$	-	\$	- \$;	-	\$	-	\$	- :	\$	- \$	\$	-	\$	- :	\$	-	\$	-	\$	- 5	\$	-
Trunkline Construction	\$	-	\$	- \$;	-	\$	-	\$	- :	\$	- \$	\$	-	\$	- :	\$	-	\$	-	\$	- 5	\$	-
Total Capital Costs	\$	-	\$	- \$	5	-	\$	-	\$	-	\$	- \$	\$	-	\$	- :	\$	-	\$	-	\$	- :	\$	-
CO2 Costs (\$M)				(_			(_	(····	_	()		(
Total CO2 Cost (\$M)	\$	(127,438)	\$	(124,968) \$	5 (1	23,174)	\$	(121,108)	\$	(119,576)	\$	(118,396) \$	\$	(116,945)	\$	(116,028)	\$	(115,342)	\$	(114,747)	\$	(80,237)	\$	(62,600)
O&M Costs (\$M)	•	(22.22.1)	•	(22.22.1) *		(00.004)	•	(00.004)	•	(22.22.1)	<u>_</u>	(22.22.1)	•	(00.004)	<u> </u>	(22.224)	•	(00.004)	•	(22.22.1)	•	(22.224)	•	(00.004)
Operating & Maintenance (\$M)	\$	(29,261)	\$	(29,261) \$	6 ((29,261)	\$	(29,261)	\$	(29,261)	\$	(29,261) \$	Þ	(29,261)	\$	(29,261)	\$	(29,261)	\$	(29,261)	\$	(29,261)	\$	(29,261)
Lifting Costs (\$M)	\$	(24,641)	\$	(24,420) \$	5 ((24,262)	\$	(24,070)	\$	(23,933)	\$	(23,827) \$	\$	(23,693)	\$	(23,606)	\$	(23,544)	\$	(23,491)	\$	(23,729)	\$	(26,988)
G&A		(10,780)		(10,736)	((10,704)		(10,666)		(10,639)		(10,618)		(10,591)		(10,573)		(10,561)		(10,550)		(10,598)		(11,250)
Total O&M Costs	\$	(64,682)	\$	(64,417) \$; ((64,227)	\$	(63,997)	\$	(63,832)	\$	(63,706) \$	\$	(63,544)	\$	(63,441)	\$	(63,366)	\$	(63,302)	\$	(63,588)	\$	(67,499)
Net Cash Flow (\$M)	\$	176,181	\$	152,816 \$	5 1	36,873	\$	123,879	\$	113,184	\$	105,263 \$	\$	99,494	\$	94,187	\$	87,830	\$	81,369	\$	112,958	\$	126,157
Cum. Cash Flow	\$	6,432,503	\$	6,585,319 \$	6,7	22,192	\$	6,846,071	\$	6,959,255	\$	7,064,517 \$	\$ 7	7,164,011	\$	7,258,199	\$7	7,346,028	\$	7,427,397	\$	7,540,356	\$ 7	7,666,513
Discount Factor		0.01		0.01	,	0.01		0.01		0.00	-	0.00	-	0.00		0.00		0.00		0.00		0.00	-	0.00
Disc. Net Cash Flow	\$	2,031	\$	1,409 \$;	1,010	\$	731	\$	534	\$	398 \$	\$	301	\$	228	\$	170	\$	126	\$	140	\$	125
Disc. Cum Cash Flow	\$	982,472	\$	983,881 \$	9	84,891	\$	985,622	\$	986,157	\$	986,554 \$	\$	986,855	\$	987,083	\$	987,253	\$	987,379	\$	987,518	\$	987,643

Field Cashflow Model State Field

Formation Depth Distance from Trunkline # of Patterns

Miscibility:

meensmyr									~~	-	
	32	33	34	r	35	 36	 37	r –	38	10	
CO2 Injection (MMcf)	128,467	78,077	27,677		-	-	-		-		7,761,312
H2O Injection (Mbw)	 146,160	 148,666	 131,779		103,546	61,459	19,382		-		2,948,688
Oil Production (Mbbl)	9,235	8,237	6,451		4,541	2,592	787		-		577,440
H2O Production (MBw)	117,754	118,176	101,232		83,242	53,462	17,395		-		3,023,760
CO2 Production (MMcf)	175,997	133,546	88,022		39,418	13,430	2,957		-		6,043,200
CO2 Purchased (MMcf)	-	-	-		-	-	-		-		1,970,256
CO2 Recycled (MMcf)	128,467	78,077	27,677		-	-	-		-		5,791,056
	•										
Oil Price (\$/Bbl)	\$ 35.00	\$ 35.00	\$ 35.00	\$	35.00	\$ 35.00	\$ 35.00	\$	-		
Gravity Adjustment	\$ 34.00	\$ 34.00	\$ 34.00	\$	34.00	\$ 34.00	\$ 34.00	\$	-		
Gross Revenues (\$M)	\$ 313,997	\$ 280,051	\$ 219,341	\$	154,387	\$ 88,128	\$ 26,765	\$	-	\$	19,632,960
Royalty (\$M)	\$ (39,250)	\$ (35,006)	\$ (27,418)	\$	(19,298)	\$ (11,016)	\$ (3,346)	\$	-	\$	(2,454,120)
Severance Taxes (\$M)	\$ (8,655)	\$ (7,719)	\$ (6,046)	\$	(4,255)	\$ (2,429)	\$ (738)	\$	-	\$	(541,133)
Ad Valorum (\$M)	\$ (12,474)	\$ (11,125)	\$ (8,713)	\$	(6,133)	\$ (3,501)	\$ (1,063)	\$	-	\$	(779,919)
Net Revenue(\$M)	\$ 253,619	\$ 226,201	\$ 177,164	\$	124,700	\$ 71,182	\$ 21,618	\$	-	\$	15,857,787
Capital Costs (\$M)											
New Well - D&C	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$	-	\$	(4,455)
Exisiting Well Deepening	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$	-	\$	(163,289)
Reworks - Producers to Producers	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$	-	\$	(38,275)
Reworks - Producers to Injectors	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$	-	\$	(7,567)
Reworks - Injectors to Injectors	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$	-	\$	(13,013)
Surface Equipment (new wells only)	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$	-	\$	(779)
CO2 Recycling Plant	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$	-	\$	(441,771)
Water Injection Plant	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$	-	\$	-
Trunkline Construction	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$	-	\$	(2,684)
Total Capital Costs	\$ -	\$ -	\$ -	\$	-	\$ -	\$ -	\$	-	\$	(671,833)
CO2 Costs (\$M)											
Total CO2 Cost (\$M)	\$ (44,964)	\$ (27,327)	\$ (9,687)	\$	-	\$ -	\$ -	\$	-	\$	(4,785,228)
O&M Costs (\$M)											
Operating & Maintenance (\$M)	\$ (29,261)	\$ (29,261)	\$ (23,409)	\$	(17,556)	\$ (11,704)	\$ (5,852)	\$	-	\$	(965,607)
Lifting Costs (\$M)	\$ (31,747)	\$ (31,603)	\$ (26,921)	\$	(21,946)	\$ (14,014)	\$ (4,546)	\$	-	\$	(900,300)
G&A	(12,202)	(12,173)	(10,066)		(7,900)	(5,144)	(2,080)		-	\$	(373,181)
Total O&M Costs	\$ (73,210)	\$ (73,037)	\$ (60,395)	\$	(47,403)	\$ (30,862)	\$ (12,477)	\$	-	\$	(2,239,089)
Net Cash Flow (\$M)	\$ 135,446	\$ 125,837	\$ 107,082	\$	77,298	\$ 40,321	\$ 9,141	\$	-	\$	8,161,637
Cum. Cash Flow	\$ 7,801,959	\$ 7,927,796	\$ 8,034,878	\$	8,112,176	\$ 8,152,496	\$ 8,161,637	##	######		
Discount Factor	0.00	0.00	0.00		0.00	0.00	0.00		0.00		
Disc. Net Cash Flow	\$ 107	\$ 80	\$ 54	\$	31	\$ 13	\$ 2	\$	-	\$	987,932
Disc. Cum Cash Flow	\$ 987,751	\$ 987,831	\$ 987,885	\$	987,916	\$ 987,929	\$ 987,932	\$9	87,932		

Basin	Permian (West Texas 8A)	Pattern Oil Production	Project Oil Production
Field	ROBERTSON		5.000
Formation	SAN ANDRES	35	
Technology Case	MPZ + TZ / ROZ (Simultaneous)		
Depth (ft)	4.754		2 3,000
Total OOIP (MMBIs)	298	15	2,000
Cumulative Recovery (MMbls) *	96		1.000
EUR (MMbls) *	96	5	
Total ROIP (MMbls)	202	0 5 10 15 20 25 30 35	0 10 20 30 40 50
API Gravity	32	Years	Years
Patterns	150	Net Cashflow	Project CO2 Injection & Production
Existing Injectors Used	0	\$120,000 T	
Converted Producers Used	0	€ \$100,000	25.000
New Injectors Drilled	150	§ \$80,000 ≥ \$60,000	\$ 20,000
Existing Producers Used	4		¥ 15,000
New Producers Drilled	171		§ 10,000
Pattern Detail		5 \$(40,000) 4 6 8 10 12 14 16 18 20 22 5 \$(40,000)	5.000
Cum Oil (Mbbl)	556	\$(80,000)	Years
Cum H2O (Mbw)	1,937 3.49 Bw/Bbl	Years	← CO2 Injection — CO2 Production
Gross CO2 (MMcf)	5,278 9.49 Mcf/Bbl		
Purchased CO2 (MMcf)	1,792 3.22 Mcf/Bbl	Cumulative Cashflow	Project Purchased & Recycled CO2
Recycled CO2 (MMcf)	3,485 6.27 Mcf/Bbl	\$1,200,000	25,000
Field Detail			20,000
	83.30	Ê \$600,000	
	28.0%		5000
	20.0 /8		
Groce CO2 (MMof)	701.625		0 5 10 15 20 25 30 35 40
Burchased CO2 (MMcf)	262.746	S(200.000) 4 6 8 10 12 14 16 18 20 22	Years
Period CO2 (MMcf)	528.870	Years	
Payback Period (per pattern)	520,019		
Project Length		Pattern-Level Cumulative Cashflow	Assumptions
	41 years	\$7,000	Assumptions.
Field Economics	¢/BBI		Oil Price \$ 35.00
Total Net Revenue (\$M)	\$ 2 227 161		CO2 Purchase Cost 4% of oil price
Total Capital Investment (\$M)			CO2 Pacycle Cost 1% of oil price
Total CO2 Cost (\$M)	φ (100,044) φ 2.20 \$ (552,052) \$ 6.62		
Total O&M Costs (\$M)	$(532,352) \neq 0.03$		Recycling Plant Costs 1 Year before Breakthru
	\$ (1 272 853) \$ 15 26		Well O&M Prod Wells Only
	φ (1,272,000) φ 10.20		
-		Years	

*Includes "Mother Nature's" waterflood oil displacement of 94 million barrels

Field Cashflow Model					Pattern			Field			
State	Permian (West Tex	as 8A)		Existi	ng Injectors Used	0.00) E:	kisting Injectors Used	0	1	
Field	ROBERTSON			Converted	Producers Used	0.00	Conve	rted Producers Used	0		
Formation	SAN ANDRES			New	Injectors Needed	1.00	N N	lew Injectors Needed	150		
Depth	47	54		New P	roducers Needed	1.14	Ne	w Producers Needed	171		
Distance from Trunkline		10 mil	es	Existing	Producers Used	0.03	Exis	sting Producers Used	4		
# of Patterns	150.	.00								-	
Miscibility:	Miscible										
			0	1	2	3	4	5	6	7	8
CO2 Injection (MMcf)				5,115	10,227	15,342	20,454	25,569	25,566	25,569	25,566
H2O Injection (Mbw)				1,278	2,556	3,834	5,115	6,393	6,393	6,393	6,393
Oil Production (Mbbl)				408	1.056	2 433	3 756	4 725	5 103	5 136	4 368
H2O Production (MBw)				2 814	5 337	6 969	8 298	9.648	8 166	6 987	4,500 6,660
CO2 Production (MMcf)				24	24	27	939	2.892	5,427	8,283	11,454
				5 001	10.000	15.015	10 515	00.077	00,100	17,000	
CO2 Purchased (MMcf)				5,091	10,203	15,315	19,515	22,677	20,139	17,286	14,112
CO2 Recycled (MINICF)				24	24	21	939	2,892	5,427	8,283	11,454
Oil Price (¢/Phl)	¢ 25.0	<u> </u>		¢ 25.00	¢ 25.00	¢ 25.00	¢ 25.00	¢ 25.00	¢ 25.00	¢ 25.00	¢ 25.00
	ຈ ວວ.ເ	0		\$ 33.00	\$ 33.00	\$ 33.00	\$ 35.00	\$ 35.00	\$ 33.00	\$ 33.00	\$ 33.00
Gravity Adjustment	5	Z		\$ 33.00	\$ 33.00	\$ 33.00	\$ 33.00	\$ 33.00	\$ 33.00	\$ 33.00	\$ 33.00
Gross Revenues (\$M)	4 - - - - /			\$ 13,464	\$ 34,848	\$ 80,289	\$ 123,948	\$ 155,925	\$ 168,399	\$ 169,488	\$ 144,144
Royalty (\$M)	-12.5%			\$ (1,683)	\$ (4,356)	\$ (10,036)	\$ (15,494)	\$ (19,491)	\$ (21,050)	\$ (21,186)	\$ (18,018)
Severance Taxes (\$M)	-5.0%			\$ (589)	\$ (1,525)	\$ (3,513)	\$ (5,423)	\$ (6,822)	\$ (7,367)	\$ (7,415)	\$ (6,306)
Ad Valorum (\$M)	-2.5%			\$ (295)	\$ (762)	\$ (1,756)	\$ (2,711)	\$ (3,411)	\$ (3,684)	\$ (3,708)	\$ (3,153)
Net Revenue(\$M)				\$ 10,897	\$ 28,205	\$ 64,984	\$ 100,320	\$ 126,202	\$ 136,298	\$ 137,179	\$ 116,667
Capital Costs (\$M)		•	(22.2.4.)	• (•••• • • • • • • • • •	^ (22.241)	^ (22.2.4.1)	^ (22.2.4.1)	^	<u>^</u>	•	
New Well - D&C		\$	(22,341)	\$ (22,341)	\$ (22,341)	\$ (22,341)	\$ (22,341)	\$ -	\$-	\$-	\$-
Exisiting Well Deepening		\$	(126)	\$ (126)	\$ (126)	\$ (126)	\$ (126)	\$ -	\$-	\$ -	\$ -
Reworks - Producers to Producers		\$	(56)	\$(56)	\$ (56)	\$ (56)	\$ (56)	\$-	\$-	\$-	\$-
Reworks - Producers to Injectors		\$	-	\$- •	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$-
Reworks - Injectors to Injectors		\$	-	\$	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$-
Surface Equipment (new wells only)		\$	(5,832)	\$ (5,832)	\$ (5,832)	\$ (5,832)	\$ (5,832)		\$ -	\$ -	\$-
CO2 Recycling Plant		\$	(39,118)	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
Water Injection Plant		\$	-	\$- •	\$ -	\$ -	\$ -	\$-	\$-	\$-	\$-
Trunkline Construction		\$	(2,150)	\$	\$ -	\$ -	\$ -	\$-	\$-	\$-	\$-
Total Capital Costs		\$	(69,623)	\$ (28,355)	\$ (28,355)	\$ (28,355)	\$ (28,355)	\$ -	\$-	\$-	\$ -
CO2 Cooto (CM)											
				¢ (7.40c)	¢ (11.000)	¢ (04.450)	¢ (07.650)	¢ (22.760)	¢ (20.004)	¢ (07.000)	¢ (00.700)
08M Costs (\$M)				φ (7,130)	\$ (14,293)	<u></u> (21,450)	\$ (27,030)	φ (32,700)	φ (30,094)	φ (21,099)	φ (23,700)
Operating & Maintenance (\$M)				\$ (1.913)	\$ (3.826)	\$ (5.739)	\$ (7.652)	\$ (9.564)	\$ (9.564)	\$ (9.564)	\$ (9.564)
				φ (1,515)	φ (0,020)	φ (0,700)	φ (1,002)	φ (0,00+)	φ (0,00+)	φ (3,304)	φ (3,304)
Lifting Costs (\$M)			:	\$ (806)	\$ (1,598)	\$ (2,351)	\$ (3,014)	\$ (3,593)	\$ (3,317)	\$ (3,031)	\$ (2,757)
G&A	20	0%		(544)	(1,085)	(1,618)	(2,133)	(2,632)	(2,576)	(2,519)	(2,464)
Total O&M Costs				\$ (3,262)	\$ (6,509)	\$ (9,707)	\$ (12,798)	\$ (15,789)	\$ (15,458)	\$ (15,114)	\$ (14,786)
Net Cash Flow (\$M)		\$	(69,623)	\$ (27,856)	\$ (20,952)	\$ 5,471	\$ 31,517	\$ 77,653	\$ 90,746	\$ 94,966	\$ 78,115
Cum. Cash Flow		\$	(69,623)	\$ (97,479)	\$ (118,430)	\$ (112,959)	\$ (81,442)	\$ (3,789)	\$ 86,957	\$ 181,923	\$ 260,038
Discount Factor	25%		1.00	0.80	0.64	0.51	0.41	0.33	0.26	0.21	0.17
Disc. Net Cash Flow		\$	(69,623)	\$ (22,285)	\$ (13,409)	\$ 2,801	\$ 12,910	\$ 25,445	\$ 23,789	\$ 19,916	\$ 13,106
Disc. Cum Cash Flow		\$	(69.623)	\$ (91.908)	\$ (105.317)	\$ (102.515)	\$ (89.606)	\$ (64.161)	\$ (40.372)	\$ (20.456)	\$ (7.351)

Miscibility:

		9	10		11	12	13	14	15		16	17	18	19
CO2 Injection (MMcf)		25,569	25,566		25,569	25,566	25,248	24,726	24,207		23,685	23,166	22,965	22,965
H2O Injection (Mbw)		6,390	6,390		6,390	6,393	6,552	6,813	7,074		7,335	7,593	7,695	7,692
Oil Production (Mbbl)		3,651	3,261		3,012	2,823	2,688	2,532	2,376		2,235	2,112	1,995	1,890
H2O Production (MBw)		6,642	6,549	1	6,468	6,369	6,321	6,372	6,588		6,810	7,038	7,263	7,386
CO2 Production (MMcf)		13,713	15,141		16,107	16,932	17,556	18,027	18,111		18,120	18,057	17,895	17,922
CO2 Purchased (MMcf)		11,856	10,425		9,462	8,634	7,692	6,699	6,096		5,565	5,109	5,070	5,043
CO2 Recycled (MMcf)		13,713	15,141		16,107	16,932	17,556	18,027	18,111		18,120	18,057	17,895	17,922
Oil Price (\$/Bbl)	\$	35.00	\$ 35.00	\$	35.00 \$	35.00 \$	35.00	\$ 35.00	\$ 35.00	\$	35.00	\$ 35.00 \$	35.00	\$ 35.00
Gravity Adjustment	\$	33.00	\$ 33.00	\$	33.00 \$	33.00 \$	33.00	\$ 33.00	\$ 33.00	\$	33.00	\$ 33.00 \$	33.00	\$ 33.00
Gross Revenues (\$M)	\$	120,483	\$ 107,613	\$	99,396 \$	93,159 \$	88,704	\$ 83,556	\$ 78,408	\$	73,755	\$ 69,696 \$	65,835	\$ 62,370
Royalty (\$M)	\$	(15,060) \$	\$ (13,452)\$	(12,425) \$	(11,645) \$	(11,088) \$	\$ (10,445)	\$ (9,801)\$	(9,219)	\$ (8,712) \$	(8,229)	\$ (7,796)
Severance Taxes (\$M)	\$	(5,271) \$	\$ (4,708)\$	(4,349) \$	(4,076) \$	(3,881) \$	\$ (3,656)	\$ (3,430)\$	(3,227)	\$ (3,049) \$	(2,880)	\$ (2,729)
Ad Valorum (\$M)	\$	(2,636)	\$ (2,354)\$	(2,174) \$	(2,038) \$	(1,940) \$	\$ (1,828)	\$ (1,715)\$	(1,613)	\$ (1,525) \$	(1,440)	\$ (1,364)
Net Revenue(\$M)	\$	97,516	\$ 87,099	\$	80,449 \$	75,401 \$	71,795	\$ 67,628	\$ 63,461	\$	59,695	\$ 56,410 \$	53,285	50,481
Capital Costs (\$M)														
New Well - D&C	\$	- 9	\$-	\$	- \$	- \$	- 9	5 -	\$ -	\$	-	\$ - \$	- :	5 -
Exisiting Well Deepening	\$	- 5	\$-	\$	- \$	- \$	- 9	÷ 4	\$ -	\$	-	\$ - \$	- :	- â
Reworks - Producers to Producers	\$	- :	\$-	\$	- \$	- \$	- 9	5 -	\$ -	\$	-	\$ - \$	- :	6 -
Reworks - Producers to Injectors	\$	- 5	\$-	\$	- \$	- \$	- 9	5 -	\$ -	\$	-	\$ - \$	- :	5 -
Reworks - Injectors to Injectors	\$	- 5	\$-	\$	- \$	- \$	- 9	÷ 4	\$ -	\$	-	\$ - \$	- :	-
Surface Equipment (new wells only)	\$	- :	5 -	\$	- \$	- \$	- 9	5 -	\$ -	\$	-	\$ - \$	- :	5 -
CO2 Recycling Plant	\$	- 9	5 -	\$	- \$	- \$	- 9	5 -	\$ -	\$	-	\$ - \$	- :	5 -
Water Injection Plant	\$	- 5	5 -	\$	- \$	- \$	- 9	- 5 -	\$ -	\$	-	\$ - \$		5 -
Trunkline Construction	\$	- 5	5 -	\$	- \$	- \$	- 9	- 5 -	\$ -	\$	-	\$ - \$		5 -
Total Capital Costs	\$	- :	\$-	\$	- \$	- \$	- 9	5 -	\$ -	\$	-	\$ - \$	- :	5 -
CO2 Costs (\$M)														
Total CO2 Cost (\$M)	\$	(21,398)	\$ (19,894)\$	(18,884) \$	(18,014) \$	(16,913) \$	\$ (15,688)	\$ (14,873)\$	(14,133)	\$ (13,473) \$	(13,361)	§ (13,333)
O&M Costs (\$M)														
Operating & Maintenance (\$M)	\$	(9,564)	\$ (9,564)\$	(9,564) \$	(9,564) \$	(9,564)	\$ (9,564)	\$ (9,564)\$	(9,564)	\$ (9,564) \$	(9,564)	\$ (9,564)
Lifting Costs (\$M)	\$	(2,573)	\$ (2,453)\$	(2,370) \$	(2,298) \$	(2,252)	\$ (2,226)	\$ (2,241)\$	(2,261)	\$ (2,288) \$	(2,315)	\$ (2,319)
G&A		(2,428)	(2,403)	(2,387)	(2,372)	(2,363)	(2,358)	(2,361)	(2,365)	(2,370)	(2,376)	(2,377)
Total O&M Costs	\$	(14,565)	\$ (14,420)\$	(14,321) \$	(14,235) \$	(14,180) \$	\$ (14,148)	\$ (14,166)\$	(14,191)	\$ (14,222) \$	(14,255)	\$ (14,260)
Net Cash Flow (\$M)	\$	61,553	\$ 52,785	\$	47,243 \$	43,152 \$	40,701	\$ 37,792	\$ 34,422	\$	31,372	\$ 28,715 \$	25,669	22,888
Cum. Cash Flow	\$	321,591	\$ 374,375	\$	421,618 \$	464,770 \$	505,472	543,263	\$ 577,685	\$	609,057	\$ 637,772 \$	663,442	686,329
Discount Factor	•	0.13	0.11	•	0.09	0.07	0.05	0.04	0.04		0.03	0.02	0.02	0.01
Disc. Net Cash Flow	\$	8,261	\$ 5,668	\$	4,058 \$	2,965 \$	2,238	\$ 1,662	\$ 1,211	\$	883	\$ 647 \$	462	\$ 330
Disc. Cum Cash Flow	\$	911	\$ 6,578	\$	10,637 \$	13,602 \$	15,840	\$ 17,502	\$ 18,713	\$	19,596	\$ 20,242 \$	20,705	\$ 21,035

	20	21	22	23	24	25	26	27	28	29	30	31
CO2 Injection (MMcf)	22,965	22,965	22,965	22,965	22,965	22,965	22,965	22,965	22,965	22,965	22,965	22,965
H2O Injection (Mbw)	7,692	7,692	7,692	7,692	7,695	7,695	7,695	7,695	7,692	7,692	7,692	7,692
Oil Production (Mbbl)	1,803	1,743	1,713	1,689	1,668	1,650	1,626	1,590	1,551	1,509	1,461	1,401
H2O Production (MBw)	7,404	7,404	7,413	7,404	7,395	7,371	7,374	7,371	7,368	7,335	7,353	7,365
CO2 Production (MMcf)	18,135	18,327	18,396	18,501	18,582	18,699	18,765	18,885	19,005	19,215	19,320	19,470
CO2 Purchased (MMcf)	4,830	4,638	4,569	4,464	4,383	4,266	4,200	4,080	3,960	3,750	3,645	3,495
CO2 Recycled (MMcf)	18,135	18,327	18,396	18,501	18,582	18,699	18,765	18,885	19,005	19,215	19,320	19,470
Oil Price (\$/Bbl)	\$ 35.00	\$ 35.00 \$	35.00 \$	35.00 \$	35.00 \$	35.00 \$	35.00 \$	35.00 \$	35.00 \$	35.00 \$	35.00 \$	35.00
Gravity Adjustment	\$ 33.00	\$ 33.00 \$	33.00 \$	33.00 \$	33.00 \$	33.00	33.00 \$	33.00 \$	33.00 \$	33.00 \$	33.00 \$	33.00
Gross Revenues (\$M)	\$ 59,499	\$ 57,519 \$	56,529 \$	55,737 \$	55,044 \$	54,450 \$	53,658 \$	52,470 \$	51,183 \$	49,797 \$	48,213 \$	46,233
Rovalty (\$M)	\$ (7,437)	\$ (7.190) \$	(7.066) \$	(6.967) \$	(6.881) \$	(6.806) \$	(6.707) \$	(6,559) \$	(6.398) \$	(6.225) \$	(6.027) \$	(5,779)
Severance Taxes (\$M)	\$ (2,603)	\$ (2,516) \$	(2,473) \$	(2,438) \$	(2,408) \$	(2,382) \$	(2,348) \$	(2,296) \$	(2,239) \$	(2,179) \$	(2,109) \$	(2,023)
Ad Valorum (\$M)	\$ (1,302)	\$ (1,258) \$	(1,237) \$	(1,219) \$	(1,204) \$	(1,191) \$	(1,174) \$	(1,148) \$	(1,120) \$	(1,089) \$	(1,055) \$	(1,011)
Net Revenue(\$M)	\$ 48,157	\$ 46,554 \$	45,753 \$	45,112 \$	44,551 \$	44,070 \$	43,429 \$	42,468 \$	41,426 \$	40,304 \$	39,022 \$	37,420
Capital Costs (\$M)												
New Well - D&C	\$ -	\$ - \$	- \$	- \$	- \$; - \$; - \$	- \$	- \$	- \$	- \$	-
Exisiting Well Deepening	\$ -	\$ - \$	- \$	- \$	- \$; - 4	; - \$	- \$	- \$	- \$	- \$	-
Reworks - Producers to Producers	\$ -	\$ - \$	- \$	- \$	- \$; - 4	- \$	- \$	- \$	- \$	- \$	-
Reworks - Producers to Injectors	\$ -	\$ - \$	- \$	- \$	- \$; - \$	- \$	- \$	- \$	- \$	- \$	-
Reworks - Injectors to Injectors	\$ -	\$ - \$	- \$	- \$	- \$; - \$	- \$	- \$	- \$	- \$	- \$	-
Surface Equipment (new wells only)	\$ -	\$ - \$	- \$	- \$	- \$; - \$	- \$	- \$	- \$	- \$	- \$	-
CO2 Recycling Plant	\$ -	\$ - \$	- \$	- \$	- \$; - 4	; - \$	- \$	- \$	- \$	- \$	-
Water Injection Plant	\$ -	\$ - \$	- \$	- \$	- \$; - \$	- \$	- \$	- \$	- \$	- \$	-
Trunkline Construction	\$ -	\$ - \$	- \$	- \$	- \$; - \$	- \$	- \$	- \$	- \$	- \$	-
Total Capital Costs	\$ -	\$ - \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
CO2 Costs (\$M)												
Total CO2 Cost (\$M)	\$ (13,109)	\$ (12,908) \$	(12,835) \$	(12,725) \$	(12,640) \$	(12,517) \$	(12,448) \$	(12,322) \$	(12,196) \$	(11,975) \$	(11,865) \$	(11,708)
O&M Costs (\$M)		. , , .										
Operating & Maintenance (\$M)	\$ (9,564)	\$ (9,564) \$	(9,564) \$	(9,564) \$	(9,564) \$	(9,564) \$	(9,564) \$	(9,564) \$	(9,564) \$	(9,564) \$	(9,564) \$	(9,564)
Lifting Costs (\$M)	\$ (2,302)	\$ (2,287) \$	(2,282) \$	(2,273) \$	(2,266) \$	(2,255) \$	(2,250) \$	(2,240) \$	(2,230) \$	(2,211) \$	(2,204) \$	(2,192)
G&A	(2,373)	(2,370)	(2,369)	(2,368)	(2,366)	(2,364)	(2,363)	(2,361)	(2,359)	(2,355)	(2,354)	(2,351)
Total O&M Costs	\$ (14,239)	\$ (14,221) \$	(14,215) \$	(14,205) \$	(14,196) \$	6 (14,184) \$	6 (14,177) \$	(14,166) \$	(14,153) \$	(14,130) \$	(14,121) \$	(14,107)
Net Cash Flow (\$M)	\$ 20,808	\$ 19,425 \$	18,703 \$	18,182 \$	17,715 \$	17,370 \$	16,804 \$	15,981 \$	15,078 \$	14,199 \$	13,036 \$	11,605
Cum. Cash Flow	\$ 707,138	\$ 726,563 \$	745,266 \$	763,448 \$	781,163 \$	798,533 \$	815,338 \$	831,318 \$	846,396 \$	860,595 \$	873,630 \$	885,236
Discount Factor	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Disc. Net Cash Flow	\$ 240	\$ 179 \$	138 \$	107 \$	84 \$	66 \$	51 \$	39 \$	29 \$	22 \$	16 \$	11
Disc. Cum Cash Flow	\$ 21,275	\$ 21,454 \$	21,592 \$	21,699 \$	21,783 \$	21,848 \$	21,899 \$	21,938 \$	21,967 \$	21,989 \$	22,005 \$	22,017

	32		33		34		35		36		37		38	Tot	tals
CO2 Injection (MMcf)	22,965		22,965		18,681		14,088		9,495		4,902		309		791,625
H2O Injection (Mbw)	7,692		7,695		9,837		12,135		14,430		14,310		12,771		301,620
Oil Production (Mbbl)	1,332		1,260		1,203		1,140		1,080		915		693		83,385
H2O Production (MBw)	7,377		7,407		7,668		8,853		10,500		10,230		8,730		290,610
CO2 Production (MMcf)	19,647		19,806		20,397		18,774		15,990		12,294		8,274		562,590
CO2 Purchased (MMcf)	3,318		3,159		-		-		-		-		-		262,746
CO2 Recycled (MMcf)	19,647		19,806		18,681		14,088		9,495		4,902		309		528,879
	 											_			
Oil Price (\$/Bbl)	\$ 35.00	\$	35.00	\$	35.00	\$	35.00	\$	35.00	\$	35.00	\$	35.00		
Gravity Adjustment	\$ 33.00	\$	33.00	\$	33.00	\$	33.00	\$	33.00	\$	33.00	\$	-		
Gross Revenues (\$M)	\$ 43,956	\$	41,580	\$	39,699	\$	37,620	\$	35,640	\$	30,195	\$	-	\$	2,728,836
Royalty (\$M)	\$ (5,495)	\$	(5,197)	\$	(4,962)	\$	(4,703)	\$	(4,455)	\$	(3,774)	\$	-	\$	(341,105)
Severance Taxes (\$M)	\$ (1,923)	\$	(1,819)	\$	(1,737)	\$	(1,646)	\$	(1,559)	\$	(1,321)	\$	-	\$	(119,387)
Ad Valorum (\$M)	\$ (962)	\$	(910)	\$	(868)	\$	(823)	\$	(780)	\$	(661)	\$	-	\$	(59,693)
Net Revenue(\$M)	\$ 35,577	\$	33,654	\$	32,131	\$	30,449	\$	28,846	\$	24,439	\$	-	\$	2,208,652
Capital Costs (\$M)															
New Well - D&C	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(111,706)
Exisiting Well Deepening	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(630)
Reworks - Producers to Producers	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(282)
Reworks - Producers to Injectors	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Reworks - Injectors to Injectors	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Surface Equipment (new wells only)	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(29,159)
CO2 Recycling Plant	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(39,118)
Water Injection Plant	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Trunkline Construction	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(2,150)
Total Capital Costs	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	(183,044)
CO2 Costs (\$M)	 														
Total CO2 Cost (\$M)	\$ (11,522)	\$	(11,355)	\$	(6,538)	\$	(4,931)	\$	(3,323)	\$	(1,716)	\$	(108)	\$	(552,952)
O&M Costs (\$M)	 (_	(·)		(2.2.2.1)	_	()	_	(2 - 2 - 1)	_	()	_	()	_	(2.12.12.2)
Operating & Maintenance (\$M)	\$ (9,564)	\$	(9,564)	\$	(9,564)	\$	(9,564)	\$	(9,564)	\$	(9,564)	\$	(7,652)	\$	(342,405)
Lifting Costs (\$M)	\$ (2,177)	\$	(2,167)	\$	(2,218)	\$	(2,498)	\$	(2,895)	\$	(2,786)	\$	(2,356)	\$	(90,149)
G&A	(2,348)		(2,346)		(2,356)		(2,413)		(2,492)		(2,470)		(2,001)	\$	(86,511)
Total O&M Costs	\$ (14,090)	\$	(14,077)	\$	(14,139)	\$	(14,475)	\$	(14,951)	\$	(14,821)	\$ ((12,009)	\$	(519,064)
Net Cash Flow (\$M)	\$ 9,965	\$	8,222	\$	11,454	\$	11,043	\$	10,572	\$	7,903	\$ ((12,117)	\$	953,591
Cum. Cash Flow	\$ 895,201	\$	903,423	\$	914,877	\$	925,920	\$	936,492	\$	944,394	\$9	32,277		· · · · ·
Discount Factor	0.00		0.00	-	0.00		0.00		0.00		0.00		0.00		
Disc. Net Cash Flow	\$ 8	\$	5	\$	6	\$	4	\$	3	\$	2	\$	(3)	\$	22,046
Disc. Cum Cash Flow	\$ 22,024	\$	22,030	\$	22,035	\$	22,040	\$	22,043	\$	22,045	\$	22,043		